

DUBLIN CITY UNIVERSITY

SCHOOL OF ELECTRONIC ENGINEERING &

SCHOOL OF MECHANICAL & MANUFACTURING

ENGINEERING

Mobile Health:

 Android Application for Diet Management using

Machine Learning, Image Classification & IoT

Device

Luke Scales

April 2018

BACHELOR OF ENGINEERING

IN

MECHATRONIC ENGINEERING

Supervised by Dr. B. MacDonald

I

Declaration

I declare that this material, which I now submit for assessment, is entirely my own work and

has not been taken from the work of others, save and to the extent that such work has been

cited and acknowledged within the text of my work. I understand that plagiarism, collusion,

and copying are grave and serious offences in the university and accept the penalties that would

be imposed should I engage in plagiarism, collusion or copying. I have read and understood

the Assignment Regulations set out in the module documentation. I have identified and

included the source of all facts, ideas, opinions, and viewpoints of others in the assignment

references. Direct quotations from books, journal articles, internet sources, module text, or any

other source whatsoever are acknowledged and the source cited are identified in the assignment

references. This assignment, or any part of it, has not been previously submitted by me or any

other person for assessment on this or any other course of study.

I have read and understood the DCU Academic Integrity and Plagiarism at

https://www4.dcu.ie/sites/default/files/policy/1%20-

%20integrity_and_plagiarism_ovpaa_v3.pdf and IEEE referencing guidelines found at

https://loop.dcu.ie/mod/url/view.php?id=448779.

Name: ________________________________ Date: _________________

https://www4.dcu.ie/sites/default/files/policy/1%20-%20integrity_and_plagiarism_ovpaa_v3.pdf
https://www4.dcu.ie/sites/default/files/policy/1%20-%20integrity_and_plagiarism_ovpaa_v3.pdf

II

Acknowledgements

I would like to thank my supervisor Dr. Bryan MacDonald for his support in this project, and

for undertaking its supervision. Without him it would not have been possible to perform this

project and for that I am grateful. I would also like to thank Bryan for introducing me to

Android development, as a project he gave me in the past brought about a set of skills I cherish

and would not have developed otherwise. I would also like to thank my family for their support

throughout my studies.

III

Abstract

This project outlines an approach for improving upon existing applications in the meal-logging

and calorie-counting category. The approach adopts a user-centric design process, while

implementing state-of-the-art, mobile optimised image classification and Machine Learning

technologies. This approach is further improved by implementing a Bluetooth kitchen scale,

which measurably improved the user-product interaction. This results in an application which

is more accessible and user-friendly than existing applications.

This work describes the development process of the Android application, while also reviewing

the relevant literature and ethical considerations of the work. The work is evaluated using

measurements adapted from user experience (UX) design principles through usability testing.

Some analysis on the retraining process involved with the TensorFlow Machine Learning

library using the MobileNet image classification model is also explored in the work, but the

results of this are inconclusive.

IV

Table of Contents

Declaration ... I

Acknowledgements ... II

Abstract .. III

1. Introduction .. 1

1.1 Overview of the Area .. 2

1.2 Problem Definition and Approach .. 5

2. Literature Review... 6

2.1 Machine Learning and Image Classification ... 7

2.2 User Experience Design ... 12

3. Technical Background ... 15

3.1 Android .. 16

3.1.1 Android Studio .. 16

3.1.2 Programming Language .. 16

3.1.3 Activities, Fragments, Layouts & Intents ... 17

3.1.4 Android Manifest .. 18

3.1.5 Data Persistence – Android Room .. 18

3.2 TensorFlow .. 20

3.3 USDA Food Compositions Database API & JSON .. 22

4. Application Design .. 26

4.1 Models.. 27

4.1.1 Food .. 28

4.1.2 Nutrient ... 28

4.2 Data ... 29

4.2.1 DateConverter ... 29

4.2.2 Meal .. 29

4.2.3 Ingredient .. 31

V

4.2.4 MealDao .. 32

4.2.5 IngredientDao ... 35

4.2.6 AppDatabase ... 36

4.3 Utilities ... 37

4.3.1 AppDBUtils .. 37

4.3.2 DatabaseInitialiser... 39

4.3.3 NetworkUtils ... 40

4.3.4 UsdaJsonUtils ... 43

4.4 Activities and Fragments ... 46

4.4.1 DailyViewActivity.java .. 46

4.4.1.1 DatePickerFragment .. 59

4.4.1.2 MealTypeDialogFragment ... 61

4.4.2 MealBuilderActivity ... 67

4.4.3 SearchResultsActivity ... 70

4.4.4 WeightActivity .. 71

4.5 Classifier .. 73

5. Optimisation, Testing, and Evaluation... 76

5.1 User Study .. 77

5.1.1 Study No. 1 ... 78

5.1.2 Study No. 2 ... 78

5.1.3 Study No. 3 ... 79

5.2 UI/UX Improvements .. 80

5.2.1 Text-based Weight Input... 80

5.2.2 Obstructive Toast Message ... 82

5.3 Usability Testing .. 83

5.4 Retraining the Image Classifier ... 86

5.4.1 TensorFlow Training Summary .. 87

VI

6 Discussion ... 88

6.1 Ethical Considerations ... 89

7 Conclusions ... 95

7.1 Future Work ... 96

Appendices ... 98

Appendix A - Android Project Files .. 98

Appendix B - Classifier Retraining Results ... 98

References .. 99

List of Figures

Figure 1: Global Obesity and Overweight Statistics (2016), Adapted from WHO [5] 3

Figure 2: TensorFlow Computation Graph Example [23] ... 21

Figure 3: TensorFlow Code Fragment for Graph of Figure 2 [23] .. 21

Figure 4: JSON Example; USDA Food Search Response ... 24

Figure 5: JSON Example; USDA Food Search Response ... 25

Figure 6: The Project Structure of the Application .. 27

Figure 7: Layout Design Window of activity_daily_view.xml; from Android Studio............ 47

Figure 8: Layout Design Window of content_daily_view.xml; from Android Studio 47

Figure 9: Close-up of Media Previous (Left), Media Next (Right) Icons on ImageButtons ... 48

Figure 10: Close-up of Input Add Icon on FloatingActionButton ... 49

Figure 11: Screenshot of DailyViewActivity; without Meals ... 52

Figure 12: Screenshots of DailyViewActivity: 3 Meals, Organised (Left); 1 Meal (Right) ... 54

Figure 13: Screenshot of DailyViewActivity; Snackbar for Single Click/Edit Item 55

Figure 14: Screenshots of DailyViewActivity; Snackbar for Long Click/Delete Item (Left);

AlertDialog for Deleting Meal (Right) .. 57

Figure 15: Screenshot of DatePickerFragment .. 59

Figure 16: Screenshot of MealTypeDialogFragment .. 61

Figure 17: Screenshot of DailyViewActivity; MealTypeDialogFragment; Overwrite Meal

AlertDialog .. 65

VII

Figure 18: MealBuilderActivity; No Ingredients (Left); 3 Ingredients (Right) 69

Figure 19: MealBuilderActivity; AlertDialog ... 70

Figure 20: SearchResultsActivity; UI Example ... 71

Figure 21: WeightActivity; UI Example.. 72

List of Tables

Table 1: List of Objects & Variables; Food.java ... 27

Table 2: List of Objects & Variables; Nutrient.java .. 28

Table 3: List of Objects & Variables; Meal.java ... 30

Table 4: List of Objects & Variables; Ingredient.java ... 32

Table 5: List of Methods; MealDao.java ... 34

Table 6: List of Methods; IngredientDao.java ... 35

Table 7: List of Methods; AppDBUtils.java .. 39

Table 8: List of Constants Strings; NetworkUtils.java .. 41

Table 9: List of Methods; NetworkUtils.java .. 41

Table 10: List of Methods; NetworkUtils.java .. 44

Table 11: List of Local Constants; UsdaJsonUtils.getNutrientDataFromJson 45

Table 12: List of Local Constants; UsdaJsonUtils.getFoodDataFromJson 45

Table 13: User Study Results: Test 1 ... 78

Table 14: User Study Results: Test 2 ... 78

Table 15: User Study Results: Test 3 ... 79

Table 16: Anonymised Participant Information .. 84

Table 17: Results U&A Test 1 ... 84

Table 18: Results U&A Test 2 ... 85

Table 19: Results U&A Test 3 ... 85

P a g e | 1

1. Introduction

Chapter 1 - Introduction

This project presents an Android application which was researched and designed to improve

upon the user experience of current diet management applications, and increase their

accessibility. This is achieved by implementing an image classifier which is based on

convolutional neural networks, as well as an integrated Bluetooth kitchen scale. The result is

an improvement in the efficiency of the user-product interaction for typical users of these

applications, with indications of enhanced accessibility for others. Section 1.1 describes the

area in which this project resides, while Section 1.2 defines the problem being addressed and

then briefs the reader on the proposed solution to this problem.

Overview of the Area Chapter 1 - Introduction

2

1.1 Overview of the Area

In recent years, the “mHealth” or “Mobile Health” category for mobile applications has seen

considerable growth. In 2017 the mHealth market had a reported worth of $23 Billion [1], a

contrast to the $6.7 Billion that the market was worth in 2012 [2]. This market is predicted, by

many sources, to at least double in value by 2020 [1] [2] [3]. Concurrently, obesity has become

a “global epidemic”, as stated by the World Health Organisation (WHO), who refer to it as

“one of today’s most blatantly visible – yet most neglected – public health problems” [4]. Aside

from direct obesity, a large proportion of the world’s population is overweight, with another

WHO study finding that “In 2016, 39% of women and 39% of men aged 18 and over were

overweight” worldwide [5]. Figure 1 shows a visual representation of the global obesity and

overweight problem, adapted from the WHO website [5]. Being classified as overweight or

obese has significant health implications, with innumerable studies finding correlations

between excess body mass and diseases such as diabetes, cardiovascular diseases, and some

forms of cancer [6].

Mobile applications and technologies have the capability to address obesity and many other

health problems, as outlined in other WHO studies which were summarised in 2011 [7]. In the

seven years since the WHO reported this, technology and mobile devices have progressed

significantly, which this author believes should make these findings more salient and applicable

now than at the time they were published. Notably, the meteoric rise of Machine Learning over

this period, as well the ever-growing support for its implementation on mobile devices,

represents significant potential for innovation in this field. Machine Learning has upended the

computer vision industry in particular, with the classification capabilities of this field far

surpassing all other approaches to computer vision [8] [9] [10]. Concurrently, the adoption rate

and number of applications of Internet-of-Things (IoT) devices has increased, with reports of

the overall IoT market being worth $157 billion in 2016 and predictions of a $457 billion value

by 2020 [11]. With these developments, capabilities for disruption and innovation follow. The

writer aims to explore the potential for Machine Learning and computer vision systems, as well

as IoT devices, to improve upon existing technology in the mHealth industry.

Overview of the Area Chapter 1 - Introduction

3

Figure 1: Global Obesity and Overweight Statistics (2016), Adapted from WHO [5]

Calorie-counting and diet management applications are undoubtedly a popular component of

the mHealth category, with the application quality review company Applause reported to have

analysed over 3.3 million reviews of calorie-counting applications [12]. This was performed as

part of an analysis of the entirety of calorie-counting applications available at that time (2015),

and the number of reviews that users have left is a testament to the prevalence of these

applications. The core features of these applications allow users to record and monitor their

caloric intake and the nutritional content of their food. The typical method in which these

applications are used is where the user, while they are preparing a meal, weighs each ingredient

individually and records its weight. This weight could be recorded separately for later use, but

the applications are designed to allow these weight values to be entered immediately. The user

can search for the food item they are currently using in their preparation process, retrieve the

nutritional content values for it from a database, and then input the weight value to the

application. With this completed for each ingredient of the meal, the application can calculate

the total calories and the nutritional composition of the meal.

Overview of the Area Chapter 1 - Introduction

4

While these applications work and are used by millions each day [13], there is room for

improvement. The concept of implementing a Machine Learning, image classification system

with diet applications is not novel, nor is the use of IoT devices. IoT devices have been

successfully integrated, well-received, and been met with modest adoption rates due to the

success of wearable technologies such as Fitbit, Apple Watch, and Samsung Gear. This is

juxtaposed with the implementation of image classification, where the likes of Samsung,

Google, and Instagram have each mused with the concept, however they have been

unsuccessfully executed. Nevertheless, the triad of Machine Learning, computer vision, and

IoT technologies has the potential to improve upon the current solutions in the field of diet

management applications. The innovations these technologies have jointly enabled show the

broad range of possibilities and engineering problems they can solve together: from the

autonomous cars being developed in the automotive industry, to the cashier-less shops in the

retail industry. With the proper research these technologies could improve upon diet

management applications. With improvements, diet management applications could become

accessible to a broader range of users, while improving the user experience for those who

already use them.

Problem Definition and Approach Chapter 1 - Introduction

5

1.2 Problem Definition and Approach

This work aims to develop a novel approach to mobile calorie-counting and diet management

applications, and one that enhances the user experience and the accessibility of such

applications. The core objective is to remove text input fields where possible, which will reduce

the complications and potential frustration associated with typing and spelling. By removing

text-based features the application will also become more accessible to people who are

dyslexic, illiterate, or those who are minorly visually impaired, to the degree where small text

becomes illegible. In addition to this, the removal of the necessity to log foods manually could

improve accessibility for those who have dexterity issues with their hands which limit their use

of mobile devices.

The writer postulates that by implementing Machine Learning-based image classification, the

efficiency of the meal-logging process will be increased, as well as user satisfaction. By

allowing users to utilise their smartphone’s camera to detect their food, the complexity of using

text to search for food could be reduced, as well as the time required for this part of the meal-

logging process. This work intends to explore the effect of this approach to meal-logging,

whilst also investigating the effect of using a Bluetooth kitchen scale to replace the manual

input of weight values. The aim is to measurably reduce the time needed to log a meal and

improve the user experience, while also performing an analysis on the retraining process of the

image classifier.

P a g e | 6

2. Literature Review

Chapter 2 – Literature Review

This chapter reviews the literature relevant to this project. Many areas of research intersect

with this project, but to cover them all would be unwieldy. The writer could reasonably focus

on the wealth of literature covering the science of health and nutrition, Android application

development, or other areas of computer science. It was decided, however, to devote this

chapter to the two most significant and interesting areas of relevance to this project: the

technology which enabled the image classification system used in the application, and the

history thereof (Section 2.1); and the principles of user-centric user experience design (Section

2.2).

2.1 Machine Learning and Image Classification Chapter 2 – Literature Review

7

2.1 Machine Learning and Image Classification

Whereas typical computer science applications involve algorithms with explicit and

conditional commands, Machine Learning refers to the branch of computer science where

algorithms learn from data and devise their own decision-making processes. For brevity,

Langley [14] describes Machine Learning as the scientific field “concerned with the processes

by which intelligent systems improve their processes over time”. Langley addresses the

similarities that Machine Learning shares with artificial intelligence and cognitive science,

whilst also highlighting the broader scope that Machine Learning encapsulates. The broad

scope of the topic is due to the presence or potential for learning in all industries, where the

focus of the Machine Learning community is not on the application but upon the learning

processes.

The learning process of Machine Learning systems often happens iteratively, where the

algorithm is given some initial data such as rules or data classes/labels. From these initial

conditions, the algorithm forms a basic understanding of the relationship between the data

types, and the algorithm then uses experience to test and refine these initial assumptions. The

experience here refers to taking labelled input data, removing the labels, and attempting to

classify samples of the data. The labels are then reapplied, and the results of the classification

process are compared to the true labels, which researchers such as Passonneau et al. [15] refer

to as the “ground truth”. If the algorithm misclassifies an input, the assumptions are adjusted

to improve accuracy. For example, an algorithm playing a board game would be told the rules

of the game, from which it would develop a basic understanding of how to play it. Each move

made and observed would be the input data that the algorithm would try to classify or predict

the outcome of, and from each move its understanding of the game strengthens and its

predictions become more accurate.

The term Machine Learning is often cited [16] [17] as being coined by Arthur L. Samuel, in

his work “Some Studies in Machine Learning Using the Game of Checkers”, published in the

IBM Journal in July of 1959. This attribution of the term to Samuel cannot be confirmed by

the writer, but Samuel’s work is the earliest text the writer has found with the term used. In his

study, Samuel explores the application of Machine Learning and verifies its principles by

teaching an algorithm the rules of a game and letting it learn how best to play [18]. This work

influenced many others, as game-play has been an oft-tackled problem in the field. The most

recent development in terms of game-playing machine learning algorithms is Alphabet Inc.’s

2.1 Machine Learning and Image Classification Chapter 2 – Literature Review

8

AlphaGo, which beat the world’s best player of the board game Go at the “Future of Go

Summit” in 2017 [19]. The significance of this achievement is due to the complexity of Go,

which is an ancient Chinese abstract strategy game [20]. Where Chess has been estimated as

having 1043 to 1050 possible positions within the game, the work of Tromp and Farneback [21]

estimated that Go has a lower limit of 20170 possible positions. To compute this, Tromp and

Farneback report that it took over 250,000 CPU-hours of computations and 30 petabytes of

disk space. This highlights how impressive the feat that AlphaGo performed is, proving how

effective it is at learning how to play the game, as it proves how impossible it would be for

AlphaGo to win using conditional or explicit commands.

The advances in Machine Learning which made AlphaGo possible are a direct result of gradual

progress in an area of scientific study. Before the turn of the millennium, Provost and Kohavi

[22] refer to the science involved in Machine Learning as being a science of engineering, in

that it is inherently a science of problem solving. It involves hypothesis, observation, analysis,

and then practical application; however, they also highlight the lack of real-world applications

of Machine Learning at that time. In the 20 years since this publication, Machine Learning has

progressed from a stage of infancy, with the field mostly existing within scientific study, to a

stage of adolescence where countless instances are applied in real-world scenarios each day.

Examples of these applications can be found on the millions of mobile devices where Google,

as outlined in the work of Abadi et al. [23], have implemented Machine Learning with Google

Search, Maps, Photos, Translate and YouTube services, since as early as 2011.

In this decade alone, the capabilities and applicability of Machine Learning has progressed

significantly. This progression is highlighted by the reduction in computational power required

to implement the algorithms: from laboratory-based applications requiring the processing

power of large clusters of computers across a network with thousands of CPUs [23], to the

current instances such as this project, which can be compiled on a laptop and ran on a mobile

device. In the latest volume of the journal in which Provost and Kohavi called for real-world

applications of Machine Learning, Brazdil and Giraud-Carrier [24] show appreciation for the

advancements made in recent years. They express how the application of Machine Learning to

classification and regression problems has “expanded outside the boundaries of research into

the realm of applied research, industry, commerce, and government”. These classification and

regression problems that Brazdil and Giraud-Carrier mention are present in innumerable

industries and settings, however a common classification application of Machine Learning is

in the field of image classification. Image classification is the process through which an

2.1 Machine Learning and Image Classification Chapter 2 – Literature Review

9

algorithm examines an image and labels it according to predetermined classes. Image

classification techniques have a broad range of applications, such as the pedestrian detection

system developed by Tomé et al. [25] for autonomous vehicles, or the many systems designed

for facial detection such as the work of Taigman et al. [26], Lu and Tang [27] or Sun, Wang

and Tang [28].

The use of Machine Learning for image classification has successfully disrupted the computer

vision community, as seen in the facial detection systems mentioned above, which Lu and Tang

prove can surpass a human’s ability to detect faces [27]. Each of these systems employ what

are known as convolutional neural networks or deep convolutional neural networks, also

known as ConvNets. A convolutional neural network is an approach to Machine Learning

which Matsugo et al. [29] refers to as being inspired by nature and biology. The neural network

consists of computational layers, with each layer contributing to the overall recognition or

classification task incrementally. This approach is not restricted to image classification and has

been used for problems such as speech recognition, as seen in the work of Deng and Li [30],

Abdel-Haimid et al. [31] and others. In image classification problems, this concept replicates

biological vision systems by using layers which can be likened to the neurons and receptors of

an animal’s visual system. LeCun and Bengio, in their 1995 paper on the application of

convolutional networks to image classification problems [32], credit the advent of this

approach to the work of the neurophysiologists D. H. Hubel and T. N. Wiesel. Hubel and

Wiesel performed experiments which analysed the visual cortex and interaction of neurons

within the brains of cats and monkeys [33]. Their findings inspired many within the field of

computer vision, with Fukushima’s work on the application of convolutional networks to image

recognition [34] [35] [36] [37] consistently giving credit to Hubel and Wiesel.

From the feature extraction techniques developed at the turn of the millennium to the

innovative, convolutional neural network approaches popularised in the past decade, the

developments which led to the image classification capabilities used in this application

involved the work of many researchers and numerous collaborations. Lowe [38] published a

method for image classification whereby features which are invariant to scale or rotation are

extracted from an image and then are compared to a large database of features. When

comparing features, a fast nearest-neighbour algorithm is employed to find similarities,

followed by a Hough transform to isolate the features belonging to individual objects within

the image. The result of this process is then verified with a least-squares analysis and can

effectively detect objects or patterns within a cluttered or busy image. Lowe’s method, known

2.1 Machine Learning and Image Classification Chapter 2 – Literature Review

10

as the Scale Invariant Feature Transform (SIFT), has been widely applied in the field of

computer vision [39]. SIFT was then utilised in what Sanchez et al [40] refer to as “the most

popular image representation for classification”: The Bag-of-Visual-Words (BoV) approach.

The BoV approach developed from the Machine Learning Bag-of-Words model: a method used

to train Machine Learning classifiers on data sets containing natural language information.

Wang et al. [41] explain how this model is used to analyse the frequency of the occurrence of

words within a text to capture the information of a document, and how this technique

progressed to be used in computer vision. Proposed by Csurka et al. [42] in 2004, the authors

show how the Bag-of-Words approach can be applied to images in what they term a bag of

keypoints. The method employs Lowe’s SIFT for feature detection and uses the results of the

SIFT to develop a histogram and analyse the frequency of features. The frequency distribution

of features could then be compared to distributions learned off-line to find possible

classification matches. This method has since become a standard machine learning approach

to image classification, with numerous studies developing improvements, optimisations, and

other applications of this method [43] [44] [45] [46]. Almost a decade after the work of Csurka

et al. was published a novel approach arose, disrupting the status quo within the computer

vision community. This new approach led to rapid developments in the field, developments

which have made the image classification feature of the writer’s application possible. This

approach, however, was not widely accepted initially [47].

In 2012, Yann LeCun, current Director of AI Research at Facebook and prolific researcher of

convolutional neural networks [48], submitted a paper to the review panel of the 2012

Conference on Computer Vision and Pattern Recognition (CVPR). The method proposed in

the paper involved training a neural network to classify images rather than using the other

approaches such as the extracting of engineered features and BoV technique, as was typical at

the time. The CVPR rejected the paper, offering “very negative reviews” [47], despite the

solution showing a significant improvement on the state of the art at that time. The paper was

subsequently submitted to the International Conference on Machine Learning of 2012 where it

was successfully published [49]. In the following months, AlexNet, the convolutional neural

network approach to image classification developed by Krizhevsky et al. [50], achieved record-

breaking results in the ImageNet Challenge of 2012: an image classification challenge which

has been held annually since 2010 [10]. LeCun credits this achievement with changing the

attitude of the computer vision community to convolutional neural networks [47].

2.1 Machine Learning and Image Classification Chapter 2 – Literature Review

11

The ImageNet Large Scale Visual Recognition Challenge is considered as the gold standard of

image classification, using hundreds of classification categories and millions of images, while

attracting competitors from around the world [10]. AlexNet was the first convolutional based

neural network to be employed at the challenge, and it won by a significant margin with an

error rate of 15.3%, whereas the second-place competitor produced an error-rate of 26.2% [50].

In the updated version of their paper which was released last year, Krizhevsky et al. address

the rejection of LeCun’s paper in 2012, as well as the shift in perspective which occurred within

the computer vision industry following their success [8]. They express how the computer vision

community believed that classification could only be performed using a vision system which

was “hand-designed” and would never be achieved by simply supplying a neural network with

sample data and labels. The authors posit that, once the computational power and required data

is available, general-purpose machine learning is more applicable to large-scale problems than

a programmer with domain expertise, which is something the computer vision community

failed to recognise at that time.

AlexNet, known as SuperVision by Krizhevsky et al. [8], inspired a series of innovations in the

application of convolutional neural networks to image classification. In the ImageNet

Challenge of 2014 the record set by AlexNet was beaten by another convolutional neural net:

Inception. This neural network, developed by Szegedy et al. [9], is reported by the authors to

produce significantly more accurate results than AlexNet, while using 12 times fewer

parameters. This Google led research progressed to further developments, with another team

of Google researchers focusing on producing smaller, more efficient neural networks for

mobile vision. Nearly a year ago, Howard et al. produced an effective, efficient and

“lightweight” approach to convolutional neural networks, enabling its application on mobile

devices: MobileNet [51]. Since the publication of Howard et al., the MobileNet model has

become readily available with TensorFlow, the Machine Learning library being used in the

writer’s work. The highly accurate Inception v3 model is also available for deployment through

TensorFlow but, due to its comparatively substantial size, will not be considered for this

application. Instead, the MobileNet model will be explored as the image classification model

for this project.

2.2 User Experience Design Chapter 2 – Literature Review

12

2.2 User Experience Design

The user experience (UX) of a product, according to Garrett [52], is how it functions in real-

world scenarios, in the hands of real users. The objective of user experience design is to marry

the form and function of the product or service, while considering the context of its use and the

perspective of the user. The result of this design process can be the deciding factor in the

success of a product or service, as Garrett gives many examples where customer loyalty and

customer conversion rates revolve around the user experience. Garrett’s book, which was

written to address user experience and user interface design for web applications, quickly

became a standard reference in the field. In the years following its publication, with the advent

of the mobile application and with the development of a broader interest in UX design, Garrett’s

work was applied to new and emerging fields. As such, Garrett released an updated edition of

his book addressing these new areas of UX and UI design, and it has since been cited over 1900

times [53]. In this book, Garrett asserts that the process of designing an effective user

experience depends upon asking the right questions and putting the user at the centre of the

design process. This “user-centred design” is what Garrett considers as the most efficient

method of user experience design.

The efficacy of a user-focused design process has also been confirmed in many other studies,

such as the work of Harris et al [54], Smith et al [55], and Bacha [56], with user experience

design often being emphasised as a fundamental focus of a successful product or business. Lin

and Cheng [57] state that the design of a product’s user experience is crucial to its success

within a competitive market. They highlight how an underachieving UX design effort can

affect the business’ customer retention and revenues, but this is commonly presented within

the topic and appears in many of the above-mentioned works. The goal of UX design is to

reduce complications within the user-product interaction, ensuring that the customer can use

the product with ease. The aim is to produce optimal usability of the product or service, which

in turn will increase the user’s satisfaction and benefit the business. The International

Organization for Standardization (ISO) standard for usability (ISO 9241-11:2018) states that,

when designing for usability, the product and service should allow “users to achieve goals

effectively, efficiently and with satisfaction, taking account of the context of use” [58]. As

such, the user’s perspective should be considered when developing a prototype or initial

version of an application, and the efficiency and effectiveness of the user experience should be

measured along with customer satisfaction levels when testing.

2.2 User Experience Design Chapter 2 – Literature Review

13

To understand the user’s perspective and develop an effective UX for a mobile application, the

designer must gain an understanding of how the audience will interact with the data that is

visually presented to them. As the work of Applen and Stephens highlights [59], people often

develop biases which can affect their understanding of visual data. These biases can be

culturally inherited or gained through training, as the authors show that people of different

professions can interpret information in contrasting manners. The importance of understanding

the audience’s perspective is further emphasised by the work of Jones [60], which shows that

the interpretation of information can change depending on the context, and to improve usability

these varying interpretations must be understood. Jones’ work also shows that the emotional

effect that visual information can have on an audience, which Jones refers to as the “affective

value”. This can have a significant impact on how information is perceived.

The effect that cultural differences can have on a person’s understanding and interpretation of

data, and its subsequent effect on user experience, is well documented. Choi et al [61] claim

that language only accounts for only 10% of cultural differences, and to successfully deploy

localised versions of an application the remaining 90% must be understood. Marcus and Gould

[62] found that people have culturally embedded expectations and understandings of visual

cues within a web or mobile application. For instance, colours can be interpreted very

differently in different cultures, with the colour red being associated with anger or warning in

some cultures, yet it represents luck and prosperity in others. In certain scenarios, as Saint-

Amant details [63], cultural differences can arise between images that are recognised as

representing a specific purpose. He explains how the appearance of a mailbox could change

between different cultures, and to effectively send mail in a new culture we should understand

the local interpretation of a mailbox. In the application developed in the writer’s work,

confusion could arise in the use of icons for searching or saving features, therefore the use of

such symbols should be researched for each prospective market. This work highlights the

importance of creating localised versions of an application when entering new markets, and

thoroughly researching the culture beforehand.

Acknowledging this research on user experience design, the findings outlined here have

influenced the writer’s work. The design of the application has been modified in response to

user feedback, and the usability metrics mentioned above have been central to the evaluation

of the work. The future work of this product will be an entirely user-centric process also. With

a prototype successfully developed, the writer now has the capability to involve the user more

and generate more feedback. As will be discussed in the “Future Work” section of this report,

2.2 User Experience Design Chapter 2 – Literature Review

14

the user experience design principles shown here will be focal in the progression of the work

and the deployment of this application in other markets. One additional acknowledgement of

UX design should also be mentioned, however.

Ineffective UX design can also lead to misinformation, which presents risks in certain

scenarios. For this application, misinformation could lead to health risks for users. For example,

this could present a serious threat for diabetic users if they rely on the application to monitor

their sugar consumption. In Jones’ work [60], he indicates how the representation of visual

information can lead to apophenia, a term used in psychology to represent the perception of

connections in data or meaning when none exist. This can occur when presenting large data

sets or when presenting visual information with minimal labelling. In these cases, the observer

must make assumptions based on their understanding of similarly presented visual data, which

they have previously seen. That said, Jones also asserts the importance of presenting

information in manners that are familiar to the user, such as pie or bar charts, as this enhances

the ease at which the information can be transmitted.

The work of Hildon et al. [64], which analysed multiple studies on the visual depiction of

health-related information, found that the optimal technique is to employ bar charts. Bar charts

were found to be both best received by the audience and, in some instances, to produce the best

results in terms of transmitting information. Hildon et al. found that bar charts produced the

best results among diabetic users when portraying information related to health risks.

Therefore, with diabetics being a user type of this application, the use of bar charts will be

explored in future versions of this application as means of displaying information.

P a g e | 15

3. Technical Background

Chapter 3 - Technical Background

This chapter provides a basic level of knowledge of the underlying technologies used in this

work. This information is provided to aid in the understanding of the remainder of the report.

The Android platform and development environment are introduced in Section 3.1, with some

description of the most critical aspects of the Android platform as well as an overview of the

programming language used. Section 3.2 introduces the reader to the TensorFlow Machine

Learning library with an overview of its history and operation. Finally, Section 3.3 details the

USDA Food Composition database and its Application Programming Interface (API). This is

the RESTful database from which the nutritional information of each food item is requested.

As the writer requests this information in the JSON format for this application, an explanation

of the JSON format and the methods used to parse it are provided in this section also.

3.1 Android Chapter 3 - Technical Background

16

3.1 Android

This section covers the Android terminology used throughout the work. It is designed to give

the reader an understanding of the principles and aspects of Android development which are

used in this project. Included in this section is the recent development of the Android

framework, Android Room, which was announced at the Google I/O Conference of 2017 [65].

Android Room is a new library for data persistence and was used for the data storage

capabilities of this project.

3.1.1 Android Studio

Android Studio is the official integrated development environment (IDE) for Android [66] and

is used throughout this work. It is based on the Java IDE “IntelliJ IDEA”, developed by

Jetbrains [67]. Android Studio is fully optimised for Android development, with an “Intelligent

code editor” which predicts the intention of the developer, completing code and checking for

proper declarations and practices [68]. It replaced the Eclipse Android Development Tools with

its first stable build, version 1.0, being released in December 2014 [69]. The current stable

build is version 3.1 which was released on the 26th of March 2018 [70]. It is available on

Windows, Linux and macOS, and both the Windows and Linux versions were used in the

development of this application.

The layout of the applications files within Android Studio is known as the “project structure”.

The project structure of this application is shown at the beginning of Chapter 4, and this

contains the entirety of the work developed throughout this project. The overview shown in

Chapter 4 displays a series of nested folders containing the applications files. These folders are

called “packages” in Android Studio and will be referred to as such throughout this work.

3.1.2 Programming Language

Java has been the official language of Android since its inception [69]. C++ is also supported

in Android, however the modern, concise programming language named Kotlin, developed by

Android Studio’s co-developers JetBrains, became an official language of Android on the 17th

of May 2017 [71]. Java will be used throughout this project so a brief synopsis of how it is

used will be presented here.

3.1 Android Chapter 3 - Technical Background

17

Java is an object-oriented language that operates via classes, objects, and methods. Within

Java classes, the developer can utilise standard Java “methods” (i.e. toString(),

printIn()), and define or “declare” their own methods. Methods are series of statements

and actions that work as one operation to produce some result. These methods can be called

within the Java class and, depending on the method’s modifier (detailed below), may be called

from within other classes. If a method is declared as void, this indicates a class which does

not require a return statement. If, however, a method is declared with a specific Java object

type, this method must be called with the same object type assigned to it. In brief, a void method

performs a task without returning a specific result to the place where it was called in the code,

whereas methods with return statements must return the assigned object type:

//Declaring methods

//This void method does not return anything

void doSomeThing(){

…

}

//This method must return a String object

String returnAString(){

String thisString = “some text”

} return thisString

//Calling methods

…

doSomething()

String myString = returnAString()

3.1.3 Activities, Fragments, Layouts & Intents

In the Android framework, the interface that the user interacts with is controlled by a Java class

known as an Activity. Almost all activities on Android call for user interaction, and it is the

Activity class that is responsible for creating and adapting the UI windows on the Android

device as needed [72]. Activities can produce and manage smaller UI elements known as

Fragments. Data can be passed through activities using Intents, which are used to launch other

activities. The Activity creates the user interface window through the void command

setContentView(View), where the View here is often a layout inflated from an .xml

layout file through specifying the layout resource ID:

void setContentView (int layoutResID)

3.1 Android Chapter 3 - Technical Background

18

3.1.4 Android Manifest

The Android Manifest (AndroidManifest.xml) is an XML file which contains a log of all

activities within the application. When an activity calls an Intent to launch another activity, the

app will crash if the activity is not registered in the Android Manifest. Amongst the log of

activities in the manifest file the developer indicates which activity should be launched when

the app is initiated. This is provided through an intent filter.

3.1.5 Data Persistence – Android Room

Data persistence (the storing of data) has been performed in Android with SQLite since the

first iteration of the operating system [73]. SQLite is an open-source library that implements a

compact, “self-contained” SQL database [74]. Developers create SQL databases by declaring

the database and defining each table and the data to be stored in each of its columns with

commands of the form:

CREATE DATABASE databasename;
CREATE TABLE table_name (
 column1 datatype,
 column2 datatype,
 column3 datatype,

); [75]

At the Google I/O Conference in 2017, Google announced that the new Architecture

Components Library was being released for Android, bringing with it new elements such as a

class for handling Lifecycle events (described below) and the new Room Persistence Library

[65]. Room provides a simpler method for applying SQLite databases by, among other

improvements, reducing the amount of code required to implement data persistence, optimising

network connectivity and data syncing, and improving the performance of data retrieval. The

author had previously developed applications using raw SQL code and had no experience using

Room prior to this work, so some research and self-learning was required to implement the

new, recommended library. Due to this the “Android Persistence Codelab” tutorial provided

online by Google Developers [76] was relied upon during implementation.

3.1 Android Chapter 3 - Technical Background

19

Room is implemented by creating Java classes for the data that must be stored and tagging the

classes with @Entity. This annotation indicates to the application that this class represents

fields to be included in the database. For each class marked @Entity, a table is created in the

database with a column defined for each field within the class. Within each entity of the

database, one of the fields must be declared as the primary key of the table, even if the table

has only one field. This is done by annotating a field with @PrimaryKey, and can set to

automatically generate and increment numbers for ID numbers by setting autogenerate = true.

The following code is an example of an entity to store a user’s first name and last name while

automatically creating an ID number for them:

@Entity
class User {

 @PrimaryKey(autogenerate = true)
 public int id;

 public String firstName;
 public String lastName;

Once data has been stored in the database, the information is retrieved by using a Data Access

Object (or Dao). These are Java Interface classes annotated with @Dao and consist of methods

with SQL statements used to access and edit the information stored in the application database.

To achieve this, methods are declared within the Dao that are annotated with @Query, @Insert,

or @Delete. The following is an example of a method that would query the database and return

a list of objects of the User class defined above:

@Query("SELECT * FROM user WHERE user_name LIKE :name AND last_name " +
"LIKE :last")

public abstract List<User> findUsersByNameAndLastName(String firstName, …
String lastName);

3.2 TensorFlow Chapter 3 - Technical Background

20

3.2 TensorFlow

TensorFlow is an open-source library which allows users to train and employ complex machine

learning models using a standard computer. As stated by the TensorFlow team in their

“Preliminary White Paper” on the 9th of November 2015: “TensorFlow… is an interface for

expressing machine learning algorithms, and an implementation for executing such

algorithms” [23]. On the same day, as TensorFlow was publicly launched, Sundar Pichai, the

CEO of Google, wrote a blog post on the official Google blog stating that TensorFlow is a

“faster, smarter, and… highly scalable machine learning system—it can run on a single

smartphone or across thousands of computers in datacenters” [77]. Pichai mentions the power

and speed of TensorFlow, stating that it can train neural networks five times faster that

Google’s first-generation machine learning system, DistBelief.

TensorFlow emerged from DistBelief, the Google Brain team’s early work on deep learning.

DistBelief was built in 2011 as a framework which utilised tens of thousands of CPU cores to

train large models of machine learning and AI neural networks [23]. It was Google’s “first-

generation scalable distributed training and interference system” [78]. The year following its

internal launch at Google, researchers were employing DistBelief across networks of thousands

of computers, training the largest deep network of its time [78]. DistBelief was closed-source

and very experimental but was utilised across Google and Alphabet companies, being

implemented with features and services such as Google Search, Maps, Translate and YouTube,

among others [23].Over years of iterations, DistBelief was refined and optimised by these

researchers, with many novel techniques and advancements in the field of deep learning being

discovered. By 2009, the Google Brain Team had achieved significant reductions in the error

rate of the neural networks, while also producing a simpler, faster, and more robust codebase.

This was publicly launched in 2015 as TensorFlow.

Since its experimental launch in 2015, version 1.0.0 was released in February 2017, with the

latest stable build (version 1.6.0) being released on the 28th of February 2018. It has become a

well-received and well-adopted machine learning library, with applications in both open-

source projects and private ventures [79], as well as a continuously-growing and active

community [80]. The codebase is readily available on GitHub under the Apache 2.0 license,

allowing anyone to contribute to it [81] [77]. To date it has over 30,000 commits from over

1,300 contributors, across 52 releases. As development progressed mobile support was

gradually implemented, with support for both Android and iOS.

3.2 TensorFlow Chapter 3 - Technical Background

21

On the 14th of November 2017, the new, mobile-optimised TensorFlow Lite was released,

expanding the reach of the platform and unlocking the potential for TensorFlow to solve more

use cases [82] [83]. This new version of TensorFlow is a “lightweight solution” and allows the

machine learning interference of TensorFlow to be applied on devices with “low latency and a

small binary size”, i.e. mobile devices and embedded hardware such as the Raspberry Pi [82].

TensorFlow is a Python based library which operates via data flow graphs. These graphs are

representative of a dataflow computation, consisting of nodes and connections in a manner

displayed in the example of Figure 2. Each node on the data flow graph represents a

mathematical operation whereas the edges represent the “tensors” between each node. These

tensors are multidimensional data arrays that flow from node to node as input/output values.

The underlying element type of the tensors is decided during the construction of the data flow

graph.

Figure 2: TensorFlow Computation Graph Example [23]

Figure 3: TensorFlow Code Fragment for Graph of Figure 2 [23]

3.3 USDA Food Compositions Database API & JSON Chapter 3 - Technical Background

22

3.3 USDA Food Compositions Database API & JSON

The United States Department of Agriculture’s (USDA) Food Composition Database API was

implemented in this application to facilitate the retrieval of nutritional information. This

database was formed from the work of the USDA’s Nutrient Data Laboratory in Beltsville,

MD, and contains a wealth of nutritional knowledge [84]. The services used in this application

are the “Food Search” and “Nutrient Report” facilities. The “Food Search” allows a text search

query for a food item and returns any items in their database with a similarity to the search

query. An example of this is if a user inputs the text “apples” as a search query, many items

are returned such as “applesauce” and others. The “Nutrient Report” is dissimilar in that it has

no leniency in its search queries: the user must enter an exact search term in the form of a

unique identifier code, known by the system as an “NDB no.” or “ndbno”. This name represents

“Nutrient DataBase no.”, and every food in the database has their own unique code. This code

is what links each food item to its nutritional information. The following is an example of the

URLs used in each search type:

Food Search:

https://api.nal.usda.gov/ndb/search/?q=apples&ds=Standard_Reference&format=json&api_k

ey=DEMO_KEY

Nutrient Search:

https://api.nal.usda.gov/ndb/reports/?ndbno=01009&type=f&format=json&api_key=DEMO_

KEY

Both URLs shown above begin with what will be referred to as the base URL of the database:

"https://api.nal.usda.gov/ndb/". Following the base URL, the different search queries diverge.

The Food Search query is first identified by the database through the term "search/?", whereas

a Nutrient Search, which generates a “Nutrient Report”, is identified by the term "reports/?".

Search queries follow these terms: for the Food Search it shows the query "q=", with the text

of the food being searched for inputted as its parameter, such as “apples” in the example above;

for the Nutrient Report, as mentioned above, a specific ndno must be entered following the

query "ndbno=".

https://api.nal.usda.gov/ndb/search/?q=apples&ds=Standard_Reference&format=json&api_key=DEMO_KEY
https://api.nal.usda.gov/ndb/search/?q=apples&ds=Standard_Reference&format=json&api_key=DEMO_KEY
https://api.nal.usda.gov/ndb/reports/?ndbno=01009&type=f&format=json&api_key=DEMO_KEY
https://api.nal.usda.gov/ndb/reports/?ndbno=01009&type=f&format=json&api_key=DEMO_KEY

3.3 USDA Food Compositions Database API & JSON Chapter 3 - Technical Background

23

Following the search query for the Food Search is the element “ds=”, which represents

“database source”. This can be set to either “Standard Reference” or “Branded Food Products”.

The following search query for the Nutrient Search is “type=”. This query is used to indicate

the type of report the user wants returned, ranging from “b” for basic, “f” for full, or “s” for

stats. In this application the basic type will always be requested as the additional information

provided in the full and statistical types are not needed and could result in unnecessary effects

on performance.

The final two queries of each search type are “format=” and “api_key=”. The format query

dictates the format that the response data is returned in, and the user has the option of either

JSON or XML. Due to prior experience with parsing JSON data in Android, the author decided

to request JSON from this database. The code used to parse the results is shown in the

“Utilities” section of this work, and an example of the JSON response from each of the URL

requests shown above can be seen in Figure 4 and Figure 5.

A JSON String usually contains multiple JSON objects and at least one JSON array. JSON

objects (contained within braces: {}) are essentially single classes or instances of a class. A

JSON array (contained within brackets: []) is an array which consists of uniformly structured

JSON objects. For example, in Figure 4 below, the JSON array titled “item” is an array of

JSON objects, each with the fields: “offset”; “group”; ”name”; “ndbno”; and “ds”. Through

the techniques that will be shown in the Utilities section, individual JSON objects can be

isolated from an area and the values stored in its fields can be retrieved. For example, the first

food item in the “item” array shown below could be accessed, and its name “Croissants, apple”

could be retrieved and used, or its ndbno number “18240”. Once the array is isolated the

developer can iterate through the entire array retrieving the required data of each object in the

array, as is done in this application.

3.3 USDA Food Compositions Database API & JSON Chapter 3 - Technical Background

24

Figure 4: JSON Example; USDA Food Search Response

3.3 USDA Food Compositions Database API & JSON Chapter 3 - Technical Background

25

Figure 5: JSON Example; USDA Food Search Response

P a g e | 26

4. Application Design

Chapter 4 - Application Design

This application was designed with many Java classes of varying purposes. The classes with

similar purposes are grouped together in the applications project structure (Figure 6). The

adapters, activities, and fragments of the application were all grouped in their own packages,

while the classes and interfaces used for the applications database were stored in the package

labelled “data”. Also stored together are the application’s custom “utilities”, a term which is

described in the section of the same name below, as well as the data models used in the

application. All Java files related to the image classifier are situated in the “classifier” package

within the Java folder, while the TensorFlow build file, graph and labels are stored in the

“assets” folder. The “res” folder contains all the resources of the application, such as the XML

layout files for each UI element in the “layout” package, and all strings, colours and styles

being found in “values”.

In this chapter, the elements directly related to the UI will be discussed along with some of the

software design associated with them. The elements of the application which are pertinent to

the understanding of the application will be discussed first, such as the data models used

throughout the UI and the custom utilities used. This will be followed by a description of each

UI element the user encounters, such as the activities and fragments of the application. As over

7500 lines of code were written for this project, not all the code will be detailed here. For details

of other elements of the application, such as the many adapters and layout files which are

involved in the UI, please refer to the source code of the project (Appendix A).

4.1 Models Chapter 4 - Application Design

27

Figure 6: The Project Structure of the Application

4.1 Models

The models within an application are classes that are created to store data temporarily. This

data is not data that is committed to the devices storage but is tied to the application Lifecycle,

i.e. the data is destroyed when the application is closed [85]. It is data that is used somewhat

instantaneously but could be later committed to memory through the use of other classes, as

will be seen in Section 4.2 on the “data” package below. For the purposes of this application

two models were created to utilise the data returned from the USDA API: Food and

Nutrient.

Table 1: List of Objects & Variables; Food.java

Modifier Variable/Object Type Name

private String group

private String name

private String ndbno

4.1 Models Chapter 4 - Application Design

28

4.1.1 Food

The Food class is used to store the results of the Food Search request made to the USDA Food

Composition Database, described in Section 3.3. The class contains three String objects to store

the name, ndbno and group of each food item. This is performed and managed by getters

and setters. The name, as will be seen further in this work, is used to list each item of the

response in the UI for the user to select from. When a selection is made, the ndbno is retrieved

from the selected Food object, which is then used to form a URL to generate a Nutrient Report

from the USDA database. The group string is not currently used but was included to

implement a sorting feature in future builds. Some examples of the food groups that can be

assigned can be seen in the JSON response in Figure 4, shown above in Section 3.3. This data

model is used by the UsdaJsonUtils utilities file to store the parsed JSON response of the

USDA Food Search. The model is then used again in the SearchResultsActivity and

its data adapter SearchResultsAdapter to apply this data to the UI.

4.1.2 Nutrient

The Nutrient data model was created to store the nutritional information of the selected

food. It stores the nutrients name (i.e. fat, protein etc.), unit (g, mg, µg, kcal, or IU for some

vitamins), and value. The value here refers to the quantity of the nutrient that is present in

100g of the food, in terms of the unit provided. All these parameters are stored in String

objects within the Nutrient class and are accessed and defined by getters and setters. As

will be seen, this data model is first used in the UsdaJsonUtils file to store the processed

results of the Nutrient Report. It is then applied in the WeightActivity and its

corresponding data adapter, NutritionalInfoAdapter, to display the nutritional

information of a food and alter the nutrient values as the weight of the ingredient increases or

decreases.

Table 2: List of Objects & Variables; Nutrient.java

Modifier Variable/Object Type Name

private String name

private String unit

private String value

4.2 Data Chapter 4 - Application Design

29

4.2 Data

The “data” package within the application contains all Java classes and interfaces required to

store and retrieve data from the device’s memory. To access and store data on an Android

device the following code must be added to the applications AndroidManifest.xml file:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

This code represents the “permissions” that the user must grant to the application to allow it to

work with the device’s memory.

4.2.1 DateConverter

The DateConverter class used here is the same as that used in The Android Open Source Project

and Google Developers codelab on Room Persistence implementation, licensed under Apache

2.0 open-source licensing. The code presented here is unedited from that provided. The purpose

of the class is to convert Java Date objects to Long objects to act as timestamps when an

ingredient or meal is being added to the database. The converter also does the opposite and

converts the Long timestamp to a Date object when retrieving data. This is achieved with two

methods: toDate, which takes a Long timestamp and returns a Date object; and

toTimestamp to produce a Long object from a Date object:

@TypeConverter

public static Date toDate(Long timestamp) {

 return timestamp == null ? null : new Date(timestamp);

}

@TypeConverter

public static Long toTimestamp(Date date) {

 return date == null ? null : date.getTime();

}

4.2.2 Meal

This public Java class is used to store the data of each meal the user creates in the application

database. It stores the title of the type of meal being created (i.e. breakfast, lunch, dinner, or

snack) as a text string while also storing an integer value representing the meal type in a

separate field, ranging from 1 to 4. The class also has fields to store the date and time the meal

was created, which is passed as a Date object and converted to a Long timestamp with the

DateConverter class, as well as Double objects to store the total calories, sugar, sodium,

and macronutrients present in the meal.

4.2 Data Chapter 4 - Application Design

30

As the Meal class is a Room database entity it is annotated with @Entity (described above),

and the use of the DateConverter class is annotated as a @TypeConverter:

@Entity

@TypeConverters(DateConverter.class)

public class Meal implements Comparable<Meal>{

The Meal class implements the Java Comparable<T> interface which allows a list of

objects to be sorted or ordered by what Oracle refers to as the class’s “natural ordering” [86].

It is used in this application to sort the user’s meals on each day in the order breakfast > lunch

> dinner > snacks. This is to produce a consistent appearance of each day regardless of the

order the meals were added to database. The implementation of this with the UI will be seen in

the section on the DailyViewActivity. As the interface is applied to the mealType

integer the following code must be included in the Meal class:

public int compareTo(@NonNull Meal m) {

 return this.mealType - m.mealType;

}

As well as the above, the Meal class automatically generates and stores a unique ID for every

meal created. This is an important feature as it is used to retrieve specific meals and, as will be

seen in the following section, is what is used to connect the ingredients to the meal they belong

to:

@PrimaryKey(autoGenerate = true)

public long id;

Table 3: List of Objects & Variables; Meal.java

Modifier Variable/Object Type Name

public long id

public int mealType

public String mealTitle

public Date mealTime

public Double totalCalories

public Double totalFat

public Double totalSats

public Double totalCarbs

public Double totalSugars

public Double totalProtein

public Double totalSodium

4.2 Data Chapter 4 - Application Design

31

The variable used in the Meal class are shown in Table 3, and it can be noted that the Double

object is used to store that total values of the meal. The importance of using the double type is

expressed in the following section, however it can be highlighted here that the Double class

object was used rather than a double primitive variable type. This decision was made as the

Double class is provided with methods to convert double values to strings, which will be used

for the UI of the application and discussed in the section on the WeightActivity.

4.2.3 Ingredient

The Ingredient class, similarly to the Meal class, generates and stores its own IDs, and

stores double values for calories, sugars, sodium, and macronutrients. The double values here,

however, store indexes of the amount of each macronutrient per 100g of the ingredient, whereas

the Meal class stores the totals for the entire meal. The totals for each meal are found by

calculating the total for each ingredient of the meal, and then adding these together. The total

values for each ingredient is found dynamically by multiplying the indexes of each ingredient’s

nutrient with the double value representing the ingredient’s weight. For example, a user might

log a meal with a single ingredient: 50g of bread, which has a calorie index of 120 calories per

100g. In this example, the total calories of the meal would be stored as 60kcal, yet the calorie

index of 120 would be stored in the Ingredient class under the Double object calories.

This is stored along with the index values for the other nutrients shown in Table 4.

The weight of the ingredient in grams (value of 50 in the example used above) is stored with

the Double object weight, which the user can change or edit at a later stage. This method

of storing the weight and the caloric indexes, rather than the final values of the ingredient’s

nutrients, allows the ingredient’s weight to be altered without issues or loss of accuracy. If the

user changes the weight, like if the user decided to have another slice of bread in the example

above, the total values of the meal are recalculated dynamically without loss of accuracy. The

implementation of this will be seen in the WeightActivity.

With accuracy and reliability in mind, it was decided to use Double objects for the weight

and macronutrient indexes as this would facilitate decimal places. Without the use of Double

objects or double variable types, it would be required to round the values to the nearest figure

following the multiplication operations between the ingredient’s weight and its nutrient index

values. While this solution may not have a significant effect on macronutrients or calories, it

has a drastic effect on sodium and other nutrients that can be retrieved from the USDA

database. For example, the Food Safety Authority of Ireland states that the recommended daily

4.2 Data Chapter 4 - Application Design

32

allowance of sodium is 1.6g [87]. If this was rounded up to 2g to be stored as an integer it

would be 40% over the recommended amount, an amount of sodium which has serious

implications for cardiovascular health [87]. Conversely, if a user was to log four meals with

0.45g of sodium each, this could potentially be rounded down to 0.0g for each meal, resulting

in the user unwittingly exceeding the recommended daily allowance of sodium, endangering

their health in the process.

One of the most important fields of the Ingredient class is the long variable meal_id. This is

used to brand each ingredient with its corresponding meal, linking the two data models of meals

and ingredients, and is used any time a meal’s ingredients are requested. It can also be noted

that the Ingredient class does not need a TypeConverter, as it is not necessary for each

ingredient to be timestamped since the meal is designed to be timestamped. The Ingredient

class also has a field for storing the ndbno (unique identifying number for USDA database,

described above) of the food, which can be used to retrieve further nutritional information such

as vitamins and minerals.

Table 4: List of Objects & Variables; Ingredient.java

Modifier Variable/Object Type Name

public long id

public long meal_id

public String name

public Double weight

public String ndbno

public Double calories

public Double fat

public Double saturates

public Double carbs

public Double sugar

public Double protein

public Double sodium

4.2.4 MealDao

The MealDao.java file is the Data Access Object interface used to access and edit the database

information relating to meals. All non-void methods of the interface return either Meal class

objects or data of a Meal, except for the findMealIngredientsByDayandType

method which returns a list of the Ingredient class. method which returns a list of the

Ingredient class. Queries which use Date objects can be annotated with

4.2 Data Chapter 4 - Application Design

33

@TypeConverters(DateConverter.class) to instruct they require the Date

objects to be converted to Long objects, e.g.:

@TypeConverters(DateConverter.class)

@Query("SELECT * From Meal " +

 "WHERE Meal.mealTime > :dayStart " +

 "AND Meal.mealTime < :dayEnd")

List<Meal> findAllMealsByDay(Date dayStart, Date dayEnd);

Instead of the above, where each method that requires the type converter is annotated, it was

decided to annotate the entire Dao. This provides the functionality of the TypeConverter to the

methods that need it while reducing unnecessary code:

@Dao

@TypeConverters(DateConverter.class)

public interface MealDao {

…

Table 5 lists all the methods present in this Data Access Object, along with a description of

their purpose. One of the most notable is the method insertMeal. This method inserts a

meal into the database while returning the ID of the newly created meal. As will be seen in the

activities below, this is a very useful feature as the returned ID can be used as the ingredient’s

meal_id parameter, without the need for an additional query after insertion. The inclusion of

(onConflict = OnConflictStrategy.REPLACE)with this method allows meals to

be updated and overwritten also.

4.2 Data Chapter 4 - Application Design

34

Table 5: List of Methods; MealDao.java

Method Name Return Type Description

findAllMealsByDay(

Date dayStart, Date

dayEnd)

List<Meal>

Selects any Meal between the

times of dayStart and

dayEnd.

retrieveMealType(long

mealId)

int
Selects the meal type from the

Meal that matches the meal ID

passed.

retrieveMealType(long

mealId)

Date
Selects the meal Date object

from the meal that matches the

meal ID passed.

findMealIngredientsBy

DayandType(int

mealType, Date

dayStart, Date

dayEnd)

List<Ingredient>
Uses the SQLite “INNER JOIN”

to retrieve the list of ingredients

from the meal that matches the

meal type and date passed.

findMealIdByDayandTyp

e(int mealType, Date

dayStart, Date

dayEnd)

long
Returns the ID of the meal that

matches the type and day passed

insertMeal(Meal meal) long
Inserts a single meal into the

database. If a conflict arises (i.e.

meal with the same ID already

exists) it overwrites the existing

meal. Most importantly, it returns

the ID of the new meal.

deleteAll() void
Deletes all meals from database –

used when testing the database.

deleteMealById(long

mealId)

void
Deletes the meal in the database

which has the same ID as that

passed.

4.2 Data Chapter 4 - Application Design

35

4.2.5 IngredientDao

The IngredientDao.java file is the Ingredient class’ equivalent of the MealDao. Table 6 displays

all the methods used in this Data Access Object interface along with their return conditions and

a brief description of each:

Table 6: List of Methods; IngredientDao.java

Method Name Return Type Description

loadIngredientById(

long id)

Ingredient
Selects the Ingredient which

has the ID passed to the method

findIngredientsOfMeal

(long mealId)

List<Ingredient>
Retrieves a list of Ingredient

objects which have a meal_id

parameter that matches the ID

passed to the method.

insertIngredient(

Ingredient

ingredient)

long
Inserts an Ingredient into the

database and returns the ID of the

new addition. Replaces

Ingredient if a conflict

occurs.

deleteAll() void
Uses the SQLite “INNER JOIN”

to retrieve the list of ingredients

from the meal that matches the

meal type and date passed.

deleteIngredientById(

long ingredientId)

void
Finds the Ingredient in the

database which has the ID passed

and deletes it.

deleteIngredientByMea

lId(long mealId)

void
Deletes any ingredients belonging

to the meal with the mealId

passed to the method

4.2 Data Chapter 4 - Application Design

36

4.2.6 AppDatabase

This public abstract class manages the application’s database. It is an adaptation of the class

provided from the Android Open Source Project and Google Developers codelab tutorial for

implementation of the Room Database functionality. Where the provided example code is

developed to store the classes “Book”, “Loan” and “User” as the database entities, the version

used in this application stores the classes Meal and Ingredient as described above. This

class is annotated using @Database and its purpose is to establish order between the Data

Access Object interfaces, while defining the database version. This version number is

incremented when the database is updated and is used when implementing database migrations

[76]. The MealDao and IngredientDao are assigned public abstract methods which allow

them to be accessed throughout the application, name mealModel() and

ingredientModel() respectively.

4.3 Utilities Chapter 4 - Application Design

37

4.3 Utilities

Code that is designed to perform standard tasks within an operating system (OS) is often

referred to as a part of the “utilities” of the OS [88]. Android, like many other operating

systems, has a series of inbuilt utilities for manipulating data, working with different file

formats, and many other common functions [89]. It is typical in Android development, and in

development on other platforms, that the developer will design small, custom pieces of code

that perform a concise task which may be applied throughout the application. These pieces of

code will often be considered as custom “utilities” by the developer (or simply “utils” [90]),

and it is considered good practice to store these together in a single package/folder within the

directory. As can be seen in the directory shown in Figure 6, the custom utilities of this

application are all housed within the aptly named package “utilities”. These utilities are used

at various points throughout the code and hence will be discussed here before the activities that

use them.

4.3.1 AppDBUtils

The AppDBUtils.java file contains the utilities created to interact with the application’s

database. These utilities are the methods which operate between the UI and the database:

retrieving, adding, and deleting data while providing the results of these operations to the UI.

The activities of the UI can make calls to any of the 16 public static methods of AppDBUtils

to access the application database. In turn, these utilities call methods of either the MealDao

or IngredientDao Data Access Object interfaces through the public abstract methods

mealModel() and ingredientModel(), which were declared in the AppDatabase.java

file.

One of the first methods of this file which will be used in the UI is the makeBlankMeal

method. This method uses the SQL @Insert method addMeal declared in the MealDao to

insert a blank meal into the database. While it may seem fruitless, this action reserves an entry

in the database for the meal being created and returns the ID of this reserved location. This is

an important design as the UX flows from day to meal to ingredient, and each ingredient must

bear the ID of the meal it belongs to. Hence, the meal is reserved, ingredients created, and then

the meal updates lastly, before the user is returned to the daily view. The following code shows

the makeBlankMeal method:

4.3 Utilities Chapter 4 - Application Design

38

public static Long makeBlankMeal(AppDatabase db, int mealType, Date

mealTime) {

 Meal meal = makeMeal(0, mealType, mealTime, null, null, null, …

null, null, null, null);

 return addMeal(db, meal);

}

In the example above, the first parameter that the method requires is an instance of the

AppDatabase class. This is the same for all methods which require access to the application

database. Following this parameter, the method requires an integer value representing the meal

type and a Date object, both of which are passed to the method makeMeal which creates a

Meal object, which is then committed to the database via the addMeal method.

private static Meal makeMeal(final long id, final int mealType, Date

mealTime, final Double calories,

 final Double fat, final Double sats,

final Double carbs, final Double sugars, final Double protein, final

Double sodium) {

 String mealTitle = getTitleFromInt(mealType);

 Meal meal = new Meal();

 meal.id = id;

 meal.mealType = mealType;

 meal.mealTime = mealTime;

 meal.mealTitle = mealTitle;

 meal.totalCalories = calories;

 meal.totalFat = fat;

 meal.totalSats = sats;

 meal.totalCarbs = carbs;

 meal.totalSugars = sugars;

 meal.totalProtein = protein;

 meal.totalSodium = sodium;

 return meal;

}

public static Long addMeal(final AppDatabase db, final Meal meal){

 return db.mealModel().insertMeal(meal);

}

This was designed in this way so that this data would be stored immediately as a meal is created,

and then retrieved when updating the meal.

4.3 Utilities Chapter 4 - Application Design

39

4.3.2 DatabaseInitialiser

This class is utilised to populate the database with “dummy” data for testing purposes. Upon

application launch it is triggered to initialise the database and insert a number of ingredients

and meals, but as it does not contribute to application functionality (and would not be included

in an official release) it will not be discussed. Please refer to the DatabaseInitialiser.java file in

the Appendix A for further information.

Table 7: List of Methods; AppDBUtils.java

Method Name Description

ingredientsToMeal Takes a list of Ingredient objects, a

long meal ID, an int for the meal type

and the Date of the meal and creates a

Meal object.

makeTimestamp Sets the day, month, and year of a

Calendar instance to the int values

passed; returns Date.

makeBlankIngredient Adds an Ingredient with no data to

the database, returns new ID as long.

makeIngredient Creates an Ingredient object from

ID from method above plus the ID of the

parent Meal, along with ndbno, weight,

calories, sugar, sodium, and

macronutrient values.

addIngredient Adds Ingredient to database,

returns ID as long.

deleteIngredientWithId Deletes the Ingredient with the

provided ID.

deleteIngredientWithMealId Deletes any ingredient belonging to the

meal with the ID passed.

returnIngredientsWithMealId Retrieves a List of Ingredient

objects which match the ID passed to

their meal_id parameter.

4.3 Utilities Chapter 4 - Application Design

40

makeBlankMeal Adds an empty meal to the database,

returns new ID.

makeMeal Private static method which creates a

Meal object from inputted values.

addMeal Adds completed Meal to the database,

returns ID as Long.

deleteMealWithId Removes the meal with the ID passed

from the database.

returnTypeOfMealWithId Fetches the integer value representing

the type of meal; matches meal ID to ID

passed.

returnTimeOfMealWithId Fetches time of meal as a Date object

from the provided meal ID.

returnIngredientsOfMealTypeAndDay Searches Meal model by type and day

and returns a list of ingredients from

matching meal.

returnMealIdFromTypeAndDay Searches database y type and day and

returns ID of matching meal.

getTitleFromInt Private method which produces a string

output for the mealTitle parameter

based on the mealType integer.

4.3.3 NetworkUtils

The NetworkUtils are utilities which connect to the internet. As there are only two types

of network requests made from this application, for the Food Search and Nutrient Report of the

USDA database, only two different URL structures are required. As described in the

Background Theory (Section 3.3) on the USDA API, both URLs require the same base URL

and the API key, but different queries and parameters. As this is the only API used and no other

network requests are currently needed for the application, the base URL of the USDA database

was assigned to a String named BASE_URL while the writer’s API key was assigned to the

String apiKey. If more network requests are needed in future builds these variables will

be prefixed with the API they are used by.

4.3 Utilities Chapter 4 - Application Design

41

A list of the objects used in this class can be seen in Table 8 while the methods are summarised

in Table 9. As each object used is a static final field, where the combination of the

static and final modifiers defines a constant, the contents of each cannot change. As

such, Table 8 shows the contents of each of these private static final String objects

alongside their names. The queries shown do not change between searches, only the parameters

passed to the URL-forming methods may differ, i.e. the ndbno number or the text of the food

the user is searching for.

Table 8: List of Constants Strings; NetworkUtils.java

Name Contents

apiKey Private API key for USDA database.

BASE_URL "https://api.nal.usda.gov/ndb/"

REPORTS "reports/?"

SEARCH "search/?"

SEARCH_QUERY "q"

BRAND_QUERY "ds

API_QUERY "api_key"

TYPE_QUERY "type"

FORMAT_QUERY "format"

NDBNO_QUERY "ndbno"

type "b"

format "json"

brand "Standard Reference"

Table 9: List of Methods; NetworkUtils.java

Method Name Description

makeNdbnoUrl Uses the Android URI builder to create a URI with the

queries required for the USDA Nutrient Report, along

with the respective parameters for each query. Returns

as URL.

makeSearchUrl Same function as above, except this method forms the

URL for the USDA Food Search.

getResponseFromHttpUrl This method uses the HttpURLConnection class to

retrieve the response of the URL request as a String.

4.3 Utilities Chapter 4 - Application Design

42

The first two methods of the class handle the formation of the two URL variants, while the

third method converts the response of either to a String object. The URLs are formed by the

Android Uri.Builder class [91], which is designed here to parse the BASE_URL with either

the REPORTS or SEARCH constant, then append the required search queries and parameters

and build the Uniform Resource Identifier, or URI. A URI is comparable to a URL except its

purpose is internal where a URL is used for external requests. Once the URI is built it is

converted to a URL using the toString() method. This can be seen in the methods shown

in the code example below.

public static URL makeNdbnoUrl(String ndbno) {

 Uri builtUri = Uri.parse(BASE_URL + REPORTS).buildUpon()

 .appendQueryParameter(NDBNO_QUERY, ndbno)

 .appendQueryParameter(TYPE_QUERY, type)

 .appendQueryParameter(FORMAT_QUERY, format)

 .appendQueryParameter(API_QUERY, apiKey)

 .build();

 URL url = null;

 try {

 url = new URL(builtUri.toString());

 } catch (MalformedURLException e) {

 e.printStackTrace();

 }

 return url;

}

public static URL makeSearchUrl(String search) {

 Uri builtUri = Uri.parse(BASE_URL + SEARCH).buildUpon()

 .appendQueryParameter(SEARCH_QUERY, search)

 .appendQueryParameter(BRAND_QUERY, brand)

 .appendQueryParameter(FORMAT_QUERY, format)

 .appendQueryParameter(API_QUERY, apiKey)

 .build();

 URL url = null;

 try {

 url = new URL(builtUri.toString());

 } catch (MalformedURLException e) {

 e.printStackTrace();

 }

 return url;

}

Once either of the URLs have been formed they can be passed to the remaining method

getResponseFromHttpUrl which makes the HTTP connection and returns the response

of the request. Once connected to the database, the aim is to retrieve the entire of the result in

one operation, and then process this with further utilities. To achieve this, a simple method was

made possible by the Scanner class that was introduced in Java 1.6 [92]. Whereas the

4.3 Utilities Chapter 4 - Application Design

43

developer would previously need to write a few lines of code to implement an instance of the

BufferedReader class to format the HTTP result into a single String, with Scanner

this can be achieved in one or two lines of code. By feeding the response to an instance of

Scanner and using .useDelimiter(“\\A”), this instructs the Scanner instance to

parse the result from input start to next input start. With only one input returned from the HTTP

request, no “next” input start exists, so the entire result is parsed into one String [93]:

public static String getResponseFromHttpUrl(URL url) throws

IOException {

 HttpURLConnection httpURLConnection = (HttpURLConnection)

url.openConnection();

 try {

 InputStream inputStream = httpURLConnection.getInputStream();

 Scanner scanner = new Scanner(inputStream);

 scanner.useDelimiter("\\A");

 boolean hasInput = scanner.hasNext();

 if (hasInput) {

 return scanner.next();

 } else {

 return null;

 }

 } finally {

 httpURLConnection.disconnect();

 }

}

4.3.4 UsdaJsonUtils

With the response of the HTTP request stored in a single String it is not entirely useful. This

single String contains all the information from the response, and much of this data is not

needed for the application. For the Food Search, the String will contain the data of every

food that matches or has a similarity with the search query; for the Nutrient Report it contains

detail on over 20 nutrients, and the amount of each nutrient present in a multitude of quantity

types. For example, the response for a type of cheese will include data such as the presence of

nutrients in a cup of diced cheese, a cup of shredded cheese, and so on. This level of detail is

not needed in this application. To work with this String, which is packed with data, it is

necessary to parse it into smaller, usable packets of data in an organised and controlled manner.

Therefore the UsdaJsonUtils.java file was created.

The NetworkUtils.getResponseFromHttpUrl method produces a single String

which is formatted as JSON by the database, as described in the Background Theory of this

4.3 Utilities Chapter 4 - Application Design

44

report, Section 3.3. An example of the output can be seen there. To parse this data, it is divided

into JSON objects and JSON arrays via the appropriately named classes JSONObject and

JSONArray. Once an array of data is found within the JSON data the developer can

programmatically iterate through the array and extract the required information from it. The

following piece of code covers the method getNutrientDataFromJson and illustrates

the process:

Table 10: List of Methods; NetworkUtils.java

Method Name Description

getNutrientDataFromJson Produces an array of Nutrient objects from a String

of JSON nutrient data.

getFoodDataFromJson

Produces an array of Food objects from a String of

JSON food search result data.

public static Nutrient[] getNutrientDataFromJson(String

nutrientJsonString) throws JSONException{

 final String USDA_REPORT = "report";

 final String USDA_FOOD = "food";

 final String USDA_NUTRIENTS = "nutrients";

 final String USDA_NAME = "name";

 final String USDA_UNIT = "unit";

 final String USDA_VALUE = "value";

JSONObject nutrientJson = new JSONObject(nutrientJsonString);

JSONObject nutrientReport = nutrientJson.getJSONObject(USDA_REPORT);

JSONObject nutrientFood = nutrientReport.getJSONObject(USDA_FOOD);

JSONArray nutrientArray = nutrientFood.getJSONArray(USDA_NUTRIENTS);

 Nutrient[] nutrients = new Nutrient[nutrientArray.length()];

 for (int i = 0; i < nutrientArray.length(); i++) {

 JSONObject results = nutrientArray.getJSONObject(i);

 nutrients[i] = new Nutrient();

 nutrients[i].setName(results.getString(USDA_NAME));

 nutrients[i].setUnit(results.getString(USDA_UNIT));

 nutrients[i].setValue(results.getString(USDA_VALUE));

 }

 return nutrients;

}

4.3 Utilities Chapter 4 - Application Design

45

In the example above, the method takes the String passed to it and begins segmenting it into

JSON objects. Each JSON object is defined by declaring the method getJSONObject while

passing a String containing the exact text used in the respective heading of the JSON string.

In this example, the array that is required is indicated by the titled “nutrients”, hence the call

getJSONArray(USDA_NUTRIENTS) is used to isolate this, where the String

USDA_NUTRIENTS contains “nutrients”. With the JSON array isolated, an array of

Nutrient objects is created which is the same length as the JSON array and a for-loop is used

to iterate through the arrays while copying the required data. As can be observed, the loop sets

the name, unit, and value of a newly created Nutrient to the respective values of each

JSON object within the JSON array for every instance of the integer i, from 0 to the end of the

array.

The method getFoodDataFromJson operates like the method shown above, but uses its

respective, locally stored final String objects to segregate the JSON objects and array found

in the Food Search response. As well as this it returns an array of Food objects instead of the

Ingredient array produced from the getNutrientDataFromJson method. A full list

of the local constant String objects used in each method can be found in Tables 11 and 12.

Table 11: List of Local Constants; UsdaJsonUtils.getNutrientDataFromJson

Name Contents

USDA_REPORT "report"

USDA_FOOD "food”

USDA_NUTRIENTS "nutrients"

USDA_NAME "name"

USDA_UNIT "unit"

USDA_VALUE "value”

Table 12: List of Local Constants; UsdaJsonUtils.getFoodDataFromJson

Name Contents

USDA_LIST "list"

USDA_ITEM "item”

USDA_GROUP "group"

USDA_NAME "name"

USDA_NDBNO "ndbno"

4.4 Activities and Fragments Chapter 4 - Application Design

46

4.4 Activities and Fragments

The function and corresponding layout of each Activity is described here, followed by the

Fragments that can be launched from each Activity.

4.4.1 DailyViewActivity.java

The DailyViewActivity is the central hub of the application: it allows users to examine

an overview of their daily meals, change the day of interest as desired, delete existing meals or

progress to other activities to add or edit meals. It is the first interface that the user is presented

with and it is the activity that the application returns to after adding or editing meals. As with

many activities in modern Android applications, the layout of this activity is defined by two

xml layout files in the res\layout\ folder: activity_daily_view.xml and

content_daily_view.xml. The activity_daily_view.xml layout file contains

the widgets used in the UI, the fab (FloatingActionButton) and Toolbar in this

case, as well as a reference to include the content_daily_view.xml layout file. Hence,

when the Java class DailyViewActivity calls to inflate the

activity_daily_view.xml file as its layout, the content_daily_view.xml

layout is automatically inflated within this. These UI elements, the widgets mentioned above,

and the call to include the UI content layout can be seen listed in the “Component Tree” on the

left side of the layout design window in Figure 7.

The content_daily_view.xml layout file contains the main UI components that the user

gathers information from and interacts with. It is governed by the ConstraintLayout class,

which specifies the position of each UI element in relation to either the parent (the window that

UI belongs to) or to other UI elements. This is known as the element’s “constraints”. At the top

of the UI a TextView (with ID tv_day_title) displays the date of the “observed” day,

i.e. the date being observed by the user. This will initialise to the user’s current day upon app

launch, however the date under observation can be changed by using the directional

ImageButton objects either side of this TextView (IDs: btn_left and btn_right).

Beneath these three elements lies a ListView which is used to list the user’s meals. The

contents of the ListView is populated programmatically by retrieving data stored in the

application’s database and the process will be described in the latter half of this section. Figure

8 shows the layout design window of the content_daily_view.xml layout file, with

each of these UI elements listed in a hierarchical manner the “Component Tree” on the left side

of the image.

4.4 Activities and Fragments Chapter 4 - Application Design

47

Figure 7: Layout Design Window of activity_daily_view.xml; from Android Studio

Figure 8: Layout Design Window of content_daily_view.xml; from Android Studio

4.4 Activities and Fragments Chapter 4 - Application Design

48

The directional buttons used in this Activity are ImageButton objects, as mentioned above

and as can be seen in Figure 8. An ImageButton operates exactly like a regular Button

object, except the text is replaced with an image or icon. The image used can be provided by

the developer, however the Android system already contains many standard icons. For these

buttons, the author utilised the inbuilt icons typically used for changing media, such as songs

or video clips. A close-up of these icons is shown in Figure 9. These icons are indicated in the

XML file by assigning the “src”, or source file, which can be seen in the following example:

<ImageButton

 .

 .

 android:id="@+id/btn_left"

 android:src="@android:drawable/ic_media_previous"

 .

 ./>

From the above code example it can be observed that source file address for the image to be

used in the left-hand button is therefore: “@android:”, indicating it is an Android stock file;

“drawable/”, pointing to the drawable folder, where the images of an app are held;

“ic_media_previous”, the title of the file used which in this case is the previous media

button, however for the right-hand button this reads “ic_media_next”.

Figure 9: Close-up of Media Previous (Left), Media Next (Right) Icons on ImageButtons

The fab (FloatingActionButton) was also assigned a stock Android icon: the “add”

symbol. This was chosen because the fab is used to add new meals, and was implemented

with the addition of the following line in the XML element:

app:srcCompat="@android:drawable/ic_input_add"

As mentioned above, the fab is declared in the activity_daily_view.xml file, where

the UI widgets of DailyViewActivity reside. As the fab is a design widget, it uses the attribute

app:srcCompat when assigning the source image rather than the android:src attribute.

This is to support compatibility with older devices. A close-up of the fab can be seen in Figure

10 below.

4.4 Activities and Fragments Chapter 4 - Application Design

49

Figure 10: Close-up of Input Add Icon on FloatingActionButton

The left and right ImageButton elements allow the user to change the date being observed,

while an integer called changeCount is used to keep track of the changing date. The

following excerpt of code is from with within the onCreate() method of the

DailyViewActivity.java file and shows the buttons of the layout file (which have

resource IDs, i.e. R.id.btn_left) being assigned to ImageButton objects that were

declared at the beginning of the Java class, along with the onClickListener for each

button:

changeCount = 1;

previousDayBtn = findViewById(R.id.btn_left);

nextDayBtn = findViewById(R.id.btn_right);

previousDayBtn.setOnClickListener(v -> {

 changeDay(-1);

 changeCount--;

 checkChangeCount(changeCount);

 });

nextDayBtn.setOnClickListener(view -> {

 changeDay(1);

 changeCount++;

 checkChangeCount(changeCount);

});

As can be seen in the code, when each button is clicked, it calls the changeDay(int)

method. This changes the observed day by using the number supplied to the method as an offset

of days to add to or subtract from the currently observed day. The onClick methods then

either increments or decrements the changeCount, depending on which button is activated.

Each onClick method subsequently checks the value of the changeCount integer through

calling the method checkChangeCount(int) while passing the current changeCount

value as the integer, i.e. checkChangeCount(changeCount). This method compares

the value of the integer using an if statement and launches the DatePickerFragment if the

4.4 Activities and Fragments Chapter 4 - Application Design

50

changeCount exceeds the limits of a ±4-day offset. The methods mentioned in this

paragraph are all shown in the following code excerpt:

private void checkChangeCount(int i){

 if(i < -4 | i > 4){

 int x;

 if(i < -4){

 x = -1;

 } else {

 x = 1;

 }

 DialogFragment datePicker = new DatePickerFragment();

 datePicker.show(getFragmentManager(),"Date Picker");

 zeroChangeCount(x);

 }

}

public void zeroChangeCount(int diff){

 changeCount = diff;

}

public void changeDay(int offset){

 Calendar calendar = Calendar.getInstance();

 calendar.set(Calendar.YEAR, currentYear);

 calendar.set(Calendar.MONTH, currentMonth);

 calendar.set(Calendar.DAY_OF_MONTH, currentDay);

 calendar.add(Calendar.DATE, offset);

 currentYear = calendar.get(Calendar.YEAR);

 currentMonth = calendar.get(Calendar.MONTH);

 currentDay = calendar.get(Calendar.DAY_OF_MONTH);

 int weekDay = calendar.get(Calendar.DAY_OF_WEEK);

 startDate = setDateLimits(calendar, 0);

 endDate = setDateLimits(calendar, 1);

 dayOfWeek = getDayName(weekDay);

 monthName = getMonthName(currentMonth);

 dayTitle = findViewById(R.id.tv_day_title);

 String thisString = dayOfWeek + ", " + currentDay + " " +

monthName + " " + currentYear;

 dayTitle.setText(thisString);

 fetchData(startDate, endDate);

}

As can be seen above, the checkChangeCount(int) method checks the changeCount

and launches the DatePickerFragment, as previously described. It can also be seen that

this method declares another integer, x, and makes a call to another method

zeroChangeCount(int). This method and the integer passed to it were included to

improve the user experience. If the user launches DatePickerFragment from using the

next or previous day buttons, they have the option to the Fragment without picking a date. If

4.4 Activities and Fragments Chapter 4 - Application Design

51

that happens, it was decided that the changeCount should be reset to prevent the

DatePickerFragment from being triggered again immediately. It was also decided that

the user should have the ability to return to their starting position/current day without triggering

the Fragment again, hence the use of the integer x. This integer acts as a buffer for the number

of days a user can change.

The changeDay(int) method, as shown in the code above, relies upon the use of the

Calendar Java class. This class is an abstract class which has been included in the utilities

of Android since API level 1. It can convert between an instance in time and specific calendar

fields, such as those used above: YEAR, MONTH, DAY_OF_MONTH, DAY_OF_WEEK [94]. As can be seen,

the method first creates a Calendar object with the current date and time by calling the

method getInstance(), and then proceeds to set the date of this Calendar object to the

date that the user was observing before pressing the button. This is done by individually setting

the year, month, and day of the Calendar object to integer values that are initialised in the

onCreate() method via another method which was designed by the author called

loadMeals().

Calendar calendar = Calendar.getInstance();

calendar.set(Calendar.YEAR, currentYear);

calendar.set(Calendar.MONTH, currentMonth);

calendar.set(Calendar.DAY_OF_MONTH, currentDay);

With the Calendar object set to the date that was previously being observed by the user, the

changeDay(int) method then takes the integer that was passed to it and adds this to the

observed date. This “offset” of days changes the date accordingly, adding 1 to the date if the

right-hand next button was pressed or adding -1 if the left-hand previous button was pressed:

calendar.add(Calendar.DATE, offset);

Once the date has been offset, the changeDay(int) method then updates the integers used

above with the new date values. Where the set method was used above, setting the new

Calendar instance to previously stored values, the get method is used after the offset has been

added to retrieve the new value for each integer. While doing so, a call is also made to retrieve

the DAY_OF_WEEK value from the Calendar object, which is stored in a local integer called

“weekDay” . This value is an integer which ranges from 1 to 7, representing each day of the

week from Sunday to Saturday. It is stored in a local integer as it is not needed outside of this

method.

4.4 Activities and Fragments Chapter 4 - Application Design

52

currentYear = calendar.get(Calendar.YEAR);

currentMonth = calendar.get(Calendar.MONTH);

currentDay = calendar.get(Calendar.DAY_OF_MONTH);

int weekDay = calendar.get(Calendar.DAY_OF_WEEK);

To utilise the integer representing the day of the week a simple method was designed to convert

the integer to a shortened version of the day’s name, i.e. “Sun”, “Mon”, “Tues” etc. A similar

method was then created for converting the currentMonth integer into a shortened version

of the month’s name, and both methods were set to return string objects. With these strings

formed, they are concatenated along with the day and year integer value and the TextView

at the top of the UI (tv_day_title, as described above) is populated with this concatenated

string. Figure 11 shows an example of this.

dayOfWeek = getDayName(weekDay);

monthName = getMonthName(currentMonth);

String thisString = dayOfWeek + ", " + currentDay + " " + monthName

+ " " + currentYear;

dayTitle.setText(thisString);

Figure 11: Screenshot of DailyViewActivity; without Meals

4.4 Activities and Fragments Chapter 4 - Application Design

53

Lastly, the changeDay(int) method makes calls to other methods to load the data (i.e.

meals) for the day being observed. This first of these methods returns a Date object using a

method that has been declared as setDateLimits(Calendar, int) . This method takes

a Calendar object, adds a day offset using the same method as above, and then sets the time

to midnight (00:00:00). The purpose of this is to set a time range to search for meals, by setting

the start of the time range to 00:00:00 on the day of interest and the end to 00:00:00 on the

following day:

startDate = setDateLimits(calendar, 0);

endDate = setDateLimits(calendar, 1);

fetchData(startDate, endDate);

For the example shown in the screenshot of Figure 11 above, the time range would therefore

be 27/03/2018 @ 00:00:00 to 28/03/2018 @ 00:00:00. This is returned as a Date object as the

database was developed with a class which converts Date objects to a timestamp, which will

be described towards the end of this chapter. When the start and end dates are passed to the

fetchData() method, it retrieves the meals for the current day as an object list and organises

them in the order: breakfast, lunch, dinner, snacks. This is done using the Collections class

and its sort method and its effect can be seen in the left-hand image of Figure 12. Each meal

was added in a random order but were organised as shown below.

4.4 Activities and Fragments Chapter 4 - Application Design

54

Figure 12: Screenshots of DailyViewActivity: 3 Meals, Organised (Left); 1 Meal (Right)

After the fetchData method retrieves the meals from the database and organises them, it

makes a call to another method checkMeals(List<Meal>), where Meal is the class that

was designed to store meal data, as discussed above. This method takes the list of meals passed

to it and checks each meal’s type, i.e. breakfast, lunch etc. A Boolean value is created for each

mealType (named B, L, D, and S respectively), and each is set to true if a meal of that type

is already stored for the day being observed. This was implemented to prevent the user from

creating multiple meals of the same type on one day, however it could be expanded in further

versions to facilitate those who eat multiple small meals per day.

public void fetchData(Date start, Date end) {

 final List<Meal> meals = mDb.mealModel() …

 .findAllMealsByDay(start, end);

 Collections.sort(meals);

 checkMeals(meals);

Once the meals have been retrieved, organised, and had their meal types checked, the

fetchData method creates an instance of the MealAdapter class and passes the list of

meals it has retrieved to this adapter. The adapter populates the ListView element with some

of the data of each meal and displays it within the DailyViewActivity. This data adapter

4.4 Activities and Fragments Chapter 4 - Application Design

55

is responsible for retrieving the appropriate data from each Meal object and using this to

populate the UI elements of the ListView. Please refer to the MealAdapter file in the Java

code of Appendix A for further details of its operation.

MealAdapter mealAdapter = new MealAdapter(DailyViewActivity.this,

meals);

 mealList.setAdapter(mealAdapter);

Once the adapter has been set with the setAdapter() command, the methods

setOnItemClickListener and setOnItemLongClickListener are called. These

are public methods that the ListView inherits from the AdapterView class [95] [96], and

allow the developer to create actions to respond to an item within the list being clicked or long-

clicked (i.e. pressed and held momentarily) respectively. In this application, it was designed so

that a single click on a meal item would raise a Snackbar to ask if the user would like to edit

this meal, which includes an action to launch the MealBuilderActivity. The appearance

of this Snackbar is shown in Figure 13.

Figure 13: Screenshot of DailyViewActivity; Snackbar for Single Click/Edit Item

4.4 Activities and Fragments Chapter 4 - Application Design

56

The following code is the section of the fetchData method which dictates the response of

the activity to the user clicking on an item within the ListView:

mealList.setOnItemClickListener(new …

AdapterView.OnItemClickListener() {

@Override

public void onItemClick(AdapterView<?> adapterView, View view, int …

i, long l) {

 Meal meal = meals.get(i);

 String mealTitle = meal.mealTitle;

 Snackbar.make(view, mealTitle + ": would you like to edit this …

meal?", Snackbar.LENGTH_LONG)

 .setAction("Edit", new EditMealListener(meal.id)).show();

 }

});

As can be seen in the code above, the action of the Snackbar is performed by the

EditMealListener, which listens for clicks on the text showing “EDIT”. When this

listener is triggered it creates an Intent to transition from the DailyViewActivity to

the MealBuilderActivity. Using the putExtra(String, long) method, the ID

of the meal to be edited is passed to the MealBuilderActivity. This allows the

ingredients of the meal to be retrieved in the next activity as each ingredient is tagged with the

meal it belongs to in the application’s database. The following code is the action taken from

within the EditMealListener class:

@Override

 public void onClick(View v) {

 Intent intent = new Intent(DailyViewActivity.this,

MealBuilderActivity.class);

 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);

 intent.putExtra(EXTRA_MEAL_ID, id);

 startActivity(intent);

 }

The setOnItemLongClickListener uses code that produces a similar response for long

clicks. It raises a Snackbar like for the case above, however the text and action are different.

The message which previously included the meal title and asked the user if they would like to

edit the meal now asks if they would like to delete the meal and clicking the action button

within the Snackbar now launches an AlertDialog. This AlertDialog askes the user

to confirm that they intend to delete the meal and was implemented to prevent the erroneous

loss of data. An example of the Snackbar launched from a long click is shown in Figure 14,

along with the AlertDialog. The following code shows the onClick method of the

4.4 Activities and Fragments Chapter 4 - Application Design

57

DeleteMealListener class, which is triggered from the Snackbar and launches the

AlertDialog:

@Override

public void onClick(View view) {

 new AlertDialog.Builder(DailyViewActivity.this)

 .setTitle("Delete Meal")

 .setMessage("Are you sure you want to delete this meal?")

 .setNegativeButton("Cancel", null)

 .setPositiveButton("Delete", new DialogInterface.OnClickListener()

{

 public void onClick(DialogInterface arg0, int arg1) {

 mDb.mealModel().deleteMealById(id);

 fetchData(startDate, endDate);

 }

 }).create().show();

}

Figure 14: Screenshots of DailyViewActivity; Snackbar for Long Click/Delete Item (Left); AlertDialog for Deleting Meal

(Right)

The remaining UI element, the fab (FloatingActionButton), is controlled by a click

listener that is assigned within the onCreate method. The onclickListener responds

to the user interacting with the fab by launching the MealTypeDialogFragment, a

4.4 Activities and Fragments Chapter 4 - Application Design

58

DialogFragment which contains a list of the 4 meal types: “Breakfast”, “Lunch”, “Dinner”

and “Snacks”. The following code comes from the onCreate method of

DailyViewActivity and shows the fab being assigned to its corresponding layout

element, along with the assignment of the onClickListener and the call to create an instance of

MealTypeDialogFragment:

FloatingActionButton fab = findViewById(R.id.fab);

fab.setOnClickListener(view ->

MealTypeDialogFragment.newInstance().show(getSupportFragmentManager(

), "dialog"));

The remaining code in the DailyViewActivity.Java file consists of public getters

ad setters for the int values of the year, month, and day which allow other activities and

fragments to retrieve the date of the day being observed by the user. The file also includes

public static Boolean objects which are used in MealTypeDialogFragment to

check the meal types stored for the current day i.e. if a Breakfast is already stored for today,

Boolean B will be True, and when the public static Boolean checkB() is called

from MealTypeDialogFragment it will return True also. The code mentioned appears as

follows:

//getters & setters

public int getCurrentYear(){

 return currentYear;

}

public int getCurrentMonth(){

 return currentMonth;

}

public int getCurrentDay(){

 return currentDay;

}

public void setDayStorage(int year, int month, int day){

 currentYear = year;

 currentMonth = month;

 currentDay = day;

}

//Boolean state checks

public static Boolean checkB(){

 return B;

}

public static Boolean checkL(){

 return L;

}

4.4 Activities and Fragments Chapter 4 - Application Design

59

public static Boolean checkD(){

 return D;

}

public static Boolean checkS(){

 return S;

}

4.4.1.1 DatePickerFragment

This Fragment is launched to allow the user to select a date that is 5 or more days ahead or

behind the current day. As discussed above, it is launched by the user through interacting with

the directional, day-changing buttons at the top of the DailyViewActivity UI. The

appearance of this Fragment’s UI is shown in Figure 15.

Figure 15: Screenshot of DatePickerFragment

The DatePickerFragment inherits its functionality from the DialogFragment class,

while monitoring user interaction by the implementation of the public static interface

DatePickerDialog.OnDateSetListener. This interface was added in API level 1

[97] and can be easily implemented to produce a responsive feature. The only edits made to

the inherited and implemented code was to set the current date as the default date of the

4.4 Activities and Fragments Chapter 4 - Application Design

60

DatePicker in the onCreateDialog method, and to also implement some methods of

the DailyViewActivity once the user has set a date. The new code can be seen below:

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

 final Calendar c = Calendar.getInstance();

 int year = c.get(Calendar.YEAR);

 int month = c.get(Calendar.MONTH);

 int day = c.get(Calendar.DAY_OF_MONTH);

 dayOfWeek = c.get(Calendar.DAY_OF_WEEK);

 return new DatePickerDialog(getActivity(),this, year, month, day);

}

@Override

public void onDateSet(DatePicker datePicker, int year, int month,

int day) {

 final Calendar calendar = Calendar.getInstance();

 calendar.set(Calendar.YEAR, year);

 calendar.set(Calendar.MONTH, month);

 calendar.set(Calendar.DAY_OF_MONTH, day);

 dayOfWeek = calendar.get(Calendar.DAY_OF_WEEK);

 ((DailyViewActivity)getActivity()).setDayStorage(year, month,

day);

 TextView tv = getActivity().findViewById(R.id.tv_day_title);

 String monthName =

((DailyViewActivity)getActivity()).getMonthName(month);

 String dayName =

((DailyViewActivity)getActivity()).getDayName(dayOfWeek);

 String thisString = dayName + ", " + day + " " + monthName + " " +

year;

 tv.setText(thisString);

 Date startDate =

((DailyViewActivity)getActivity()).setDateLimits(calendar, 0);

 Date endDate =

((DailyViewActivity)getActivity()).setDateLimits(calendar, 1);

 ((DailyViewActivity)getActivity()).fetchData(startDate, endDate);

}

The methods shown above, initiated once the user selects a date, updates the fields of the

DailyViewActivity and loads the data for the chosen day.

4.4 Activities and Fragments Chapter 4 - Application Design

61

4.4.1.2 MealTypeDialogFragment

The MealTypeDialogFragment is launched from the fab of DailyViewActivity

and is used when creating a new meal. It allows the user to select which meal type they would

like to assign to the meal being created by displaying a list of options for the user to choose

from. This Fragment extends the BottomSheetDialogFragment class, a version of

DialogFragment that uses an interface which expands from the bottom of the display. This

Fragment class is relatively new, being added in version 23.4.0 of Android [98]. From this

class, the MealTypeDialogFragment inherits its appearance, animation, and

functionality.

Figure 16: Screenshot of MealTypeDialogFragment

The standard appearance of the BottomSheetDialogFragment is a white list of items.

When the user creates an instance of the stock Fragment, the developer must include a

method for passing an integer value to indicate how many list items the Fragment should

create. The Fragment then displays these items via a RecyclerView, which is useful for

performance when handling long lists. As there are only four meal types in this application the

stock Fragment was altered so that each instance of the Fragment that is created would

4.4 Activities and Fragments Chapter 4 - Application Design

62

populate a dialog with 4 list items, and without the need for an integer to be passed. The results

of this can be seen in Figure 16, while the following code comparison shows the edits that were

made to produce this:

//Stock code

public static ItemListDialogFragment newInstance(int itemCount) {

 final ItemListDialogFragment fragment = new

ItemListDialogFragment();

 final Bundle args = new Bundle();

 args.putInt(ARG_ITEM_COUNT, itemCount);

 fragment.setArguments(args);

 return fragment;

}

//Edited code

public static MealTypeDialogFragment newInstance() {

 int itemCount = 4;

 final MealTypeDialogFragment fragment = new

MealTypeDialogFragment();

 final Bundle args = new Bundle();

 args.putInt(ARG_ITEM_COUNT, itemCount);

 fragment.setArguments(args);

 return fragment;

}

In the above comparison, aside from the difference in Fragment names, the only difference

relates to the itemCount integer: rather than being passed to the Fragment in the stock code,

the edited code always sets itemCount to 4. While the RecyclerView is not necessary for

this application, as no views are recycled in this list, it was decided to not alter this inherited

functionality. This was because the RecyclerView is an efficient view regardless, and it

works. Within the RecyclerView.ViewHolder , further edits were made to the stock

code as seen in the following:

//Stock code

@Override

public void onBindViewHolder(ViewHolder holder, int position) {

 holder.text.setText(String.valueOf(position));

}

//Edited code

@Override

public void onBindViewHolder(ViewHolder holder, int position) {

 if(position == 0){

 holder.text.setText(R.string.meal_breakfast);

 }

 if(position == 1){

 holder.text.setText(R.string.meal_lunch);

4.4 Activities and Fragments Chapter 4 - Application Design

63

 }

 if(position == 2){

 holder.text.setText(R.string.meal_dinner);

 }

 if(position == 3){

 holder.text.setText(R.string.meal_snacks);

 }

}

The edited code above simply changes the TextView within each item of the list, instructing

the items to display the name of each of the meal types. The final edit to note is the changes

made to the onClick method of the onClickListener applied to each list item. In the

stock code, the onClick method is provided however no action is taken. The onClick

method calls dismiss(); which simply dismisses the click action. In the edited code, the

onClick method is adapted to respond to the user’s meal selection:

//Stock code

text.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if (mListener != null) {

 mListener.onItemClicked(getAdapterPosition());

 dismiss();

 }

 }

});

//Edited code

text.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if (mListener != null) {

 mListener.onItemClicked(getAdapterPosition());

 int mealType = getAdapterPosition() + 1;

//Checks if mealType already in database - if statement simplified

 boolean duplicateB = mealType == 1 && checkB();

 boolean duplicateL = mealType == 2 && checkL();

 boolean duplicateD = mealType == 3 && checkD();

 boolean duplicateS = mealType == 4 && checkS();

 if(duplicateB || duplicateL || duplicateD || duplicateS){

 postNotice(text.getText().toString(), mealType);

 } else {

 launchBuilder(mealType, false);

 }

 }

}

In the edited code, the onClick method begins by using the position of the selected item in

the adapter’s list to determine which mealType was chosen. This is done by retrieving the

item’s position in the adapter, which is 0-indexed (also known as “zero-based” or “zero-

4.4 Activities and Fragments Chapter 4 - Application Design

64

indexed”), meaning it starts its list or count from 0. As the mealType integers stored in the

application database are 1-indexed, the integer value 1 is added to the adapter position integer

to translate this to the mealType the user selected:

int mealType = getAdapterPosition() + 1;

With the mealType stored in an int object, the code is then designed to check whether a

meal of the same type has been previously created. In the first iteration of this application this

was achieved through a series of nested if statements, however this became complicated and

difficult to debug. To simplify this, a single boolean was created for each meal which is only

True if the user is attempting to duplicate the meal. As can be seen above, the if statement

works by checking if the user is trying to duplicate any meal (i.e. if duplicateB = True

etc.) and, if so, it makes a call to the void method postNotice(String, int). This

method takes the name of the meal (Breakfast, Lunch etc.) as its String input, which is used in

the message displayed in an AlertDialog:

private void postNotice(String mealTitle, int mealType) {

 new AlertDialog.Builder(getContext())

 .setTitle("Overwrite Meal")

 .setMessage("You already have a " + mealTitle + " saved. Would …

you like to overwrite it?")

 .setNegativeButton("Cancel", null)

 .setPositiveButton("Overwrite", new …

DialogInterface.OnClickListener() {

 public void onClick(DialogInterface arg0, int arg1) {

 launchBuilder(mealType,true);

 }

 }).create().show();

}

4.4 Activities and Fragments Chapter 4 - Application Design

65

Figure 17: Screenshot of DailyViewActivity; MealTypeDialogFragment; Overwrite Meal AlertDialog

This AlertDialog alerts the user that they must overwrite the existing meal of that type if

they wish to proceed, and the an onClickListener is set to the “OVERWRITE” option.

If the user selects to overwrite the meal, the launchBuilder(int, boolean) is called

to start the MealBuilderActivity, with the integer value representing the type of meal

being passed along with the boolean value true. This boolean value is used to indicate to the

activity if it is overwriting a meal (true) or creating a new meal (false), and both the

boolean and the mealType integer are passed to the new activity, along with integers for

the day, month, and year of the meal:

4.4 Activities and Fragments Chapter 4 - Application Design

66

private void launchBuilder(int mealType, boolean overwrite){

 int year = ((DailyViewActivity)getActivity()).getCurrentYear();

 int month = ((DailyViewActivity)getActivity()).getCurrentMonth();

 int day = ((DailyViewActivity)getActivity()).getCurrentDay();

 Intent intent = new Intent(getActivity(), …

MealBuilderActivity.class);

 intent.putExtra(EXTRA_OVERWRITE_CASE, overwrite);

 intent.putExtra(EXTRA_MEAL_ID, 0);

 intent.putExtra(EXTRA_MEAL_TYPE, mealType);

 intent.putExtra(EXTRA_MEAL_YEAR, year);

 intent.putExtra(EXTRA_MEAL_MONTH, month);

 intent.putExtra(EXTRA_MEAL_DAY, day);

 startActivity(intent);

}

As can be seen in the above, the day, month, and year values are retrieved by calling the getters

defined in the fragment’s parent activity, DailyViewActivity . These methods are shown

at the end of the DailyViewActivity section. These are passed along with the mealType

integer, the overwrite boolean, and 0 as the long value for the mealId. The above method is

also called from the if statement shown previously. In the case that no duplicates are present,

the overwrite boolean is set to false to indicate a new meal is being created.

4.4 Activities and Fragments Chapter 4 - Application Design

67

4.4.2 MealBuilderActivity

As the name implies this is the Activity that the user utilises to build meals. This activity can

be launched for a few reasons: in the creation of a new meal; when editing a current meal; or

when overwriting an existing meal. When a new meal is created, the activity is told the type of

meal the user wants to build, as well as the date the user was previously observing in the

DailyViewActivity before this activity was started. In this scenario, a position in the

meal database is reserved by the activity when it is launched, using the methods described in

Section 4.2. This action generates a mealId which is used for the meal_id field of each

ingredient added, as well as being used when the meal is updated at the end of the meal-building

process.

If a meal is being edited the correct mealId must be passed to the activity with the intent.

With this ID, the activity can retrieve the existing ingredients of the meal so that they can be

edited or more ingredients can be added to the meal. In the case of a meal being overwritten,

however, a different process occurs. As this case occurs when a user attempts to create a

duplicate meal, the system knows what type of meal is being overwritten and the date of the

meal. This information is passed to the MealBuilderActivity, along with a true value

for the overwrite boolean. When this boolean is true, the program retrieves the ID of the

meal which matches the date and type, and then deletes all its ingredients. This provides a blank

meal that the user can add ingredients to, while using the same database position for the meal.

The conditional statement which ensures the correct applications for the different methods is

shown in the following excerpt:

Intent myIntent = getIntent();

 long mealId =

myIntent.getLongExtra(MealTypeDialogFragment.EXTRA_MEAL_ID, 0);

 if (mealId != 0) {

 loadIngredients(mealId);

 ingredientAdapter = new IngredientAdapter(ingredientList);

 ingredientAdapter.setClickListener(this);

 itemList.setAdapter(ingredientAdapter);

 currentMealId = mealId;

 } else { //dates

 mealType = myIntent.getIntExtra(EXTRA_MEAL_TYPE, 0);

 if (mealType == 0) {

 throw new NullPointerException("Houston, we have a

problem: mealType must be set for new meal creation");

 }

 int year = myIntent.getIntExtra(EXTRA_MEAL_YEAR, 0);

 int month = myIntent.getIntExtra(EXTRA_MEAL_MONTH,

4.4 Activities and Fragments Chapter 4 - Application Design

68

13); //Jan-Dec = 0 - 11; 12 reserved for lunar calendars

 int day = myIntent.getIntExtra(EXTRA_MEAL_DAY, 0);

 if (year == 0 | month == 13 | day == 0) {

 throw new NullPointerException("Houston, we have

a problem: date must be passed");

 }

 boolean overwrite =

myIntent.getBooleanExtra(MealTypeDialogFragment.EXTRA_OVERWRITE_CASE

,false);

 if(overwrite){

 mealId = overwriteIngredients(mealType, day,

month, year);

 deleteIngredientWithMealId(mDb, mealId);

 currentMealId = mealId;

 } else {

 Date mealTime = makeTimestamp(year, month, day);

 currentMealId = makeBlankMeal(mDb, mealType,

mealTime);

 }

 }

With a blank meal or a meal being edited, the user has two options for adding new ingredients:

using the text search features or the image classifier. The image classifier is launched using the

button marked “SEARCH BY IMAGE”, whereas the text search features are controlled using

the EditText field and ImageButton at the top of the UI. If the image classifier is selected,

the camera is activated and, through processes described in Section 4.5, a String containing the

result of the classification is returned to the MealBuilderActivity. The classifier calls

a method which creates a database request using the same method employed by the text-search

feature, by using NetworkUtils to form a URL and establish the connection with USDA

database.

With the text-search feature, the user can use the EditText field to input a search query, with

the ImageButton beside this launching the AsyncTask called FoodSearchTask. This

AsyncTask uses a background thread to search for food types from the USDA food database

API. It performs this by calling the NetworkUtils.getResponseFromHttpUrl

method which, as discussed above, returns a JSON response. This JSON is not processed

immediately, as the activity is designed to pass the entire JSON string to the following activity,

SearchResultsActivity as one Intent extra. This process is performed regardless of the

user’s method for search, i.e. through text or image classification. With a text search, the value

entered into This can be observed in the onPostExecute void method of the

FoodSearchTask ASyncTask, as it passes the entire String with the line:

4.4 Activities and Fragments Chapter 4 - Application Design

69

intent.putExtra(SearchResultsActivity.EXTRA_FOOD_DATA, searchResults);

This data is transmitted along with a multiple items of data such as the ID of the meal and the

ID of the newly created ingredient. To use the image classification features to search for

nutritional content, the button beneath the EditText field and ImageButton triggers an

Intent to the CameraActivity. Figure 18 shows the appearance of this activity with and

without ingredients in the current meal.

Figure 18: MealBuilderActivity; No Ingredients (Left); 3 Ingredients (Right)

When Ingredients are present, the activity uses the adapter IngredientAdapter to

maintain the UI and control the data representation of the ingredients. Most of the code used

here is similar in function to that used in the DailyViewActivity to display meals. In the

MealBuilderActivity the fab has a different purpose however. Here it is used to save progress

rather than to add new items. Some other notable code used here is in the use of the

AlertDialog seen in Figure 19 which alerts a user to select if they would like to edit or

delete the current ingredient.

4.4 Activities and Fragments Chapter 4 - Application Design

70

Figure 19: MealBuilderActivity; AlertDialog

4.4.3 SearchResultsActivity

SearchResultsActivity is launched from the MealBuilderActivity via an

Intent. Upon launching, the activity uses the Intent.getExtra(String) method to

retrieve the ingredient name that was passed to it as an extra attached to the Intent. This String

value is passed to the NetworkUtils class to form a URL request to the USDA database on

a background thread using the ASyncTask method. The JSON results of this request is passed

to the UsdaJsonUtils.getFoodDataFromJson method which parses the data and

stores it in an array of Food class objects. The resultant array of Food objects are then passed

to the SearchResultAdapter which binds the information of each Food object in the

array to an item of a RecyclerView. If a user selects one of these items, the name and ndbno

of the food that the user selected is used to form a request for a USDA Nutrient Report, the

results of which are passed to the WeightActivity. Figure 20 shows an example of this

activity’s UI.

4.4 Activities and Fragments Chapter 4 - Application Design

71

Figure 20: SearchResultsActivity; UI Example

4.4.4 WeightActivity

The WeightActivity is responsible for recording the weight of the user’s ingredient, which

it then uses to dynamically calculate the values of each nutrient of the ingredient. For example,

the WeightActivity initially loads the 100-gram index values for each nutrient, i.e. the

amount of each nutrient present in 100g of the ingredient. The current weight value is then

multiplied with the index values to calculate the current nutrient values. An example of this

could be an instance where an ingredient has 260 calories per 100g: if the user changes the

weight input value to 50g, the calorie value will dynamically update to 130 calories. This is

achieved by the data adapter NutritionalInfoAdapter, which takes the weight value

as a Double object and uses this in the following code:

@Override

public void onBindViewHolder(ViewHolder holder, int position) {

 Nutrient nutrient = nutrientList.get(position);

 Double multiplier = foodWeight/100;

 nutrientName = nutrient.getName();

 nutrientVal = nutrient.getValue();

4.4 Activities and Fragments Chapter 4 - Application Design

72

 nutrientUnit = nutrient.getUnit();

 Double quantityPer100g = Double.parseDouble(nutrientVal);

 dynamicVal = quantityPer100g * multiplier;

 holder.nutrientNameTV.setText(nutrientName);

 double testvar = new BigDecimal(dynamicVal).setScale(1,

RoundingMode.HALF_UP).doubleValue();

 String val = Double.toString(testvar);

 holder.nutrientValTV.setText(val);

 holder.nutrientUnitTV.setText(nutrientUnit);

}

The above code is taken from the NutritionalInfoAdapter and shows the data binding

used to dynamically calculate each nutrients value in the UI of the WeightActivity. Figure

21 shows an example of this UI, where the user enters the weight value in the EditText field

and uses the confirm button to save the ingredient. With the Bluetooth scale implemented, this

process is performed automatically through Bluetooth receivers and the Skale 2 development

kit [99].

Figure 21: WeightActivity; UI Example

4.5 Classifier Chapter 4 - Application Design

73

4.5 Classifier

This package contains all the Java files responsible for the TensorFlow image classifier. Much

of the code is used on an as-is basis from what is provided by Google under the Apache 2.0

open-source license [83]. Due to the lack of design involved in this Section, an overview of

how the system operates will be provided, and the edits that were made to the code will be

highlighted.

The image classification process is performed using four classes:

• CameraActivity, which is launched from the MealBuilderActivity using an Intent. This

is the parent activity to the Camera2BasicFragment.

• Camera2BasicFragment, a Fragment which is instantiated by the CameraActivity and

is used to access the device’s camera. This class manages the calls to the classifier and,

in the unedited open source version, it literally “runs” the operation. This will be

explained below.

• AutoFitTextureView, a view which is applied to the camera feed to process it. It formats

the camera feed to the appropriate dimensions and quality for TensorFlow

classification.

• ImageClassifier, the class which runs the TensorFlow classification methods and

implements the data labels and classification model stored in the application’s “assets”

folder.

These four classes cooperate to implement an image classification feature which continually

classifies the incoming camera feed. In doing so it posts a list of the top three closest matches

to the current object in the camera feed. It does this by ranking the result with what can only

be described as a “running” list, whereby the results of each classification are appended to a

continuous stream of classification results. The classifier then posts the top three results, but

due to the memory involved in this running order and the sorting features used, it was common

for data to be retained when it was not needed. This led to some misclassifications, or the

perception of misclassifications in early testing. An example of this would be if a user

successfully classified an apple with a result of 90% confidence. If the user then attempted to

classify an orange and, due to the lighting conditions or otherwise, the classifier had difficulty

classifying the orange, the result would remain as an apple classification. If the classifier was

60% confident that the object was an orange but 40% confident that it may be a lemon, in this

4.5 Classifier Chapter 4 - Application Design

74

scenario the highest result would prevail with the classifier stating a 90% confidence result of

an apple.

For the writer’s application, it was decided to edit to this code to include a button which allows

single classification processes, rather than the continual classification included in the stock

model. It was also desirable to clear the list of previous results after each classification. The

original code used in the TensorFlow example, but absent from the writer’s application, is seen

in the following excerpt from the Camera2BasicFragment:

/** Starts a background thread and its {@link Handler}. */

private void startBackgroundThread() {

 backgroundThread = new HandlerThread(HANDLE_THREAD_NAME);

 backgroundThread.start();

 backgroundHandler = new Handler(backgroundThread.getLooper());

 synchronized (lock) {

 runClassifier = true;

 }

 backgroundHandler.post(periodicClassify);

}

/** Stops the background thread and its {@link Handler}. */

private void stopBackgroundThread() {

 backgroundThread.quitSafely();

 try {

 backgroundThread.join();

 backgroundThread = null;

 backgroundHandler = null;

 synchronized (lock) {

 runClassifier = false;

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

 static final int REQUEST_IMAGE_CAPTURE = 1;

 private void dispatchTakePictureIntent() {

 Intent takePictureIntent = new

Intent(MediaStore.ACTION_IMAGE_CAPTURE);

 if

(takePictureIntent.resolveActivity(getActivity().getPackageManager()

) != null) {

 startActivityForResult(takePictureIntent,

REQUEST_IMAGE_CAPTURE);

 }

 }

 @Override

 public void onActivityResult(int requestCode, int resultCode,

Intent data) {

 if (requestCode == REQUEST_IMAGE_CAPTURE && resultCode ==

RESULT_OK) {

 Bundle extras = data.getExtras();

4.5 Classifier Chapter 4 - Application Design

75

 Bitmap imageBitmap = (Bitmap) extras.get("data");

 mImageView.setImageBitmap(imageBitmap);

 }

 }

/** Takes photos and classify them periodically. */

private Runnable periodicClassify =

 new Runnable() {

 @Override

 public void run() {

 synchronized (lock) {

 if (runClassifier) {

 classifyFrame();

 }

 }

 backgroundHandler.post(periodicClassify);

 }

 };

In the above code, the original version of this system continually classifies the incoming camera

feed through use of the Runnable class, which enables continual processes in the Java

language. Once the run() method of the Runnable periodicClassify is called it

continually makes calls to the method classifyFrame(), which is seen directly above,

following the @Override annotation. In the writer’s work, the aim is to allow the user

sufficient time to get their food item in view of the camera before classification begins.

Concurrently, only the top result is needed. To achieve this a button was added to the UI with

the following code in the Camera2BasicFragment:

mBtn = view.findViewById(R.id.btn);

mBtn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String search = classifyFrame();

 Context context = getContext();

 MealBuilderActivity.searchFoodDatabase(context, search);

 }

});

As can be seen in this excerpt, the classifyFrame() method was modified to return a

string, with this result being used in a database search request of the

MealBuilderActivity. This modification simply altered the output of the filtering

process used within the ImageClassifier.java file to ensure it would only post the

highest confidence match. That single result is then passed back to the

MealBuilderActivity which uses it to find the nutritional content of the food.

P a g e | 76

5. Optimisation, Testing, and Evaluation

Chapter 5 - Optimisation, Testing, and

Evaluation

This chapter focuses on the optimisation of the application, testing and the evaluation of the

application’s performance. As a user-centric product, the evaluation is based on the efficiency

and efficacy with which its users can perform the designated task, as well as the user’s level of

satisfaction with the product. A user study was conducted over the course of two months,

whereby one user analysed the application at various stages and performed efficiency analysis

at each point. The aim of this was to generate feedback during development, and to also have

preliminary indicators of the application’s efficiency. The results of this User Study will be

discussed first, following the UI improvements that developed from this. Following this, the

results of the Usability Testing will be presented, ultimately evaluating the project. Some

experiments were also performed on the training of the TensorFlow image classifier and the

results of this will be included at the end of this section.

5.1 User Study Chapter 5 - Optimisation, Testing, and Evaluation

77

5.1 User Study

Over the course of 2 months, from the 28th of January the 8th of April, a hyper-focused user

study was conducted with only one participant. As only one participant was involved in this

study, the results of the efficiency tests are not transferrable, i.e. the results are not indicative

to how the application will perform with a wider audience. The study did produce valuable

results however. The user is an active meal logger who currently uses the Android application

“Lose it!” to track their food. The user partakes in the “trendy” [100] diet plan known as the

“keto-diet”. This diet involves restricting carbohydrate consumption to allow the body to enter

a state known as ketosis, whereby the body burns lipid-based ketones for fuel instead of glucose

derived from carbohydrates [101] [102]. Considering how readily available carbohydrates are

in food sources, it is a diet that must be closely monitored for proper execution. As such, every

Sunday evening the user prepares her main meal for the weekdays of the coming week in one

large batch. Each weeknight she consumes one chicken breast, approximately 250 grams of

broccoli, and 20 grams of butter, with each meal being prepared, weighed, and logged the

previous Sunday. This was opportune for gathering feedback on the application as it

progressed.

Due to the efforts in retraining the image classifier focusing mostly on fruits, the classifier was

not applied in these tests. All tests of this section involved analysing the UI of the application

at various stages of development, while the use of the Bluetooth kitchen scale was tested in the

final user study. For an evaluation of the overall system please refer to Section 5.3.

5.1 User Study Chapter 5 - Optimisation, Testing, and Evaluation

78

5.1.1 Study No. 1

The first set of tests conducted with the user took place on the 28th of January. This was

performed with an early version of the application. This set a baseline for the application’s

performance throughout this study, while some points were raised on how the application could

be improved.

Table 13: User Study Results: Test 1

Meal No. Efficiency – Time to Log (s) Efficacy – No. of Errors

1 185.23 3

2 115.44 4

3 102.35 0

4 102.14 1

5 119.11 1

Avg: 104.43 1.8

5.1.2 Study No. 2

The second study with this user was performed with a version of the application with some

improvements made to the user interface. This study took place on Sunday the 25th of February.

The effects of the improvements made in the month since the previous study can be seen in the

results of Table 14, which shows a reduction in the error rate and an improvement in the

efficiency. The user credited this to the implementation of the points raised in the feedback of

the previous study

Table 14: User Study Results: Test 2

Meal No. Efficiency – Time to Log (s) Efficacy – No. of Errors

1 121.01 2

2 79.12 0

3 69.80 0

4 68.96 1

5 57.48 1

Avg: 79.28 0.8

 Chapter 5 - Optimisation, Testing, and Evaluation

79

In comparison to the results of Study No. 1, these results show a 24.1% improvement in the

average time taken for this user to log a meal. Similarly, a 55.56% reduction in the average

error rate occurred, based on the measurements taken.

5.1.3 Study No. 3

The final study of this section took place on Sunday the 8th of April. In this study, the Bluetooth

kitchen scale was implemented as well as some UI improvements. The effects of these

developments are noticable in the efficiency recordings of Table 15. The final study showed a

32.29% improvement in average efficiency recordings when compared to the previous study,

and a 48.67% improvement in comparison to the initial study. Alternatively, the average

efficacy of the application was reduced by 15% in comparison to the previous study, but an

overall improvement of one third when compared to the initial study. This increase in

application error was due to a Toast message which was included as part of the implementation

of the Bluetooth kitchen scale. Unbeknownst to the writer during development, this Toast

message was implemented in a way which allowed it to “linger” on the screen of the

application, blocking the use of the keyboard in some instances. The Toast message is included

in the UI to notify the user of the status of connectivity between the phone and the Bluetooth

scale. Details of this issue and its resolution is described in the following section.

Table 15: User Study Results: Test 3

Meal No. Efficiency – Time to Log (s) Efficacy – No. of Errors

1 54.26 1

2 52.82 1

3 56.98 2

4 50.88 1

5 53.04 1

Avg: 53.60 1.2

5.2 UI/UX Improvements Chapter 5 - Optimisation, Testing, and Evaluation

80

5.2 UI/UX Improvements

Prior to usability testing, the writer used the feedback gained from the User Study to improve

the design of the application. This was performed to ensure that the UI was working properly

and effectively, and to ensure that bias was removed from the usability testing. For example, if

a bug was present in testing which only affected the text-based features of the application, this

would produce biased results in the usability testing. Many improvements were made due to

the feedback provided, however most of these were minor improvements or purely aesthetic

improvements. As such, this section will only address the improvements made which were

pertinent to producing an unbiased and accurate result in the usability testing.

5.2.1 Text-based Weight Input

When testing the app with text-based features, it was noted that the EditText field of the

WeightActivity should be overwritten as soon as the user starts entering digits. The

EditText was previously set to be populated with the value 100 upon creation. This was

because the NutritionalInfoAdapter updates the nutrient values based on the

EditText value, and it was designed to initially show the nutrient values per 100g. To

implement the suggested improvement the adapter was altered to initially accept 100 as its

weight input value and only read the EditText value after the user begins entering numbers.

The following code shows the final configuration while the commented code is what was

previously used:

// weight = Double.valueOf(weightIn.getText().toString());

 weight = 100.0;

 infoAdapter = new NutritionalInfoAdapter(nutrientList, weight);

 itemList.setAdapter(infoAdapter);

The XML element of the EditText can be seen below. The previously used code included

the attribute in comments beneath the element (i.e. android:text), whereas the updated version

includes the android:hint attribute. The difference between these two attributes is that the text

attribute sets the literal value of the field to the value of the assigned string

(default_weight in this case), whereas the hint attribute shows the value of the string as

grey, inactive text behind the field. It is essentially a placeholder which indicates to the user

where they should enter values. The string default_weight used here is stored in the

strings.xml file and contains the text value of “100”. The following is the EditText XML

element:

5.2 UI/UX Improvements Chapter 5 - Optimisation, Testing, and Evaluation

81

<EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:id="@+id/et_weight"

 android:inputType="number"

 android:layout_margin="5dp"

 android:hint="@string/default_weight"

 android:textSize="16sp"

 android:textColor="@android:color/white"/>

 <!--android:text="@string/default_weight"-->

Upon testing this, however, it was noticed that the activity was not working as intended when

editing a pre-existing ingredient. Rather than use the stored weight value to calculate the

nutrient values on launch, the calculations were defaulting to 100g values. To circumvent this,

the following if statement was included:

if(weightIn.getText().toString().length() != 0) {

 weight = Double.valueOf(weightIn.getText().toString());

 } else {

 weight = 100.0;

 }

infoAdapter = new NutritionalInfoAdapter(nutrientList, weight);

itemList.setAdapter(infoAdapter);

Another suggestion for WeightActivity was to allow the “DONE” button of the keypad

to save the ingredient as well as the confirm button included in the UI. This was easily

implemented by using the in-built Android method setOnKeyListener and using the

correct keycode for the enter button, as seen in the following code:

weightIn = findViewById(R.id.et_weight);

weightIn.setOnKeyListener(new View.OnKeyListener() {

 public boolean onKey(View v, int keyCode, KeyEvent event) {

 if ((event.getAction() == KeyEvent.ACTION_DOWN) && (keyCode ==

KeyEvent.KEYCODE_ENTER)) {

 saveIngredient();

 return true;

 }

 return false;

 }

});

With this code implemented, when the “DONE” button of the keypad is pressed, the listener

above calls the method saveIngredient() which saves the ingredient and returns to the

MealBuilderActivity.

5.2 UI/UX Improvements Chapter 5 - Optimisation, Testing, and Evaluation

82

5.2.2 Obstructive Toast Message

As mentioned above, the user study revealed an instance which could adversely affect the

usability testing. While the possibility for affecting the efficacy of the application was apparent,

this was a relatively simple problem. In the implementation of the Skale Bluetooth kitchen

scale, a Toast message is declared to inform the user that the application is attempting to pair

with the device. The initial build can be seen in the following piece of code:

if(mSkaleHelper.isBluetoothEnable()){

 boolean hasPermission = SkaleHelper.hasPermission(this);

 if(hasPermission){

 mSkaleHelper.resume();

 String toastString = "finding skale...";

 Toast.makeText(this,toastString, LENGTH_LONG).show();

 }else{

 SkaleHelper.requestBluetoothPermission(this,

REQUEST_BT_PERMISSION);

 }

}else{

 Intent turnOn = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(turnOn, REQUEST_BT_ENABLE);

}

In this code above, it can be seen that the Toast message is set to display for the time

“LENGTH_LONG”, which results in the Toast message not disappearing after this activity is

closed. The effect this has on the usability of the application is that it blocks a small section of

the keyboard of the device, potentially preventing the user from searching for their next

ingredient momentarily.

5.3 Usability Testing Chapter 5 - Optimisation, Testing, and Evaluation

83

5.3 Usability Testing

The testing of the application was performed with a set of users from various backgrounds and

demographics. With the criteria of usability in mind: efficiency, efficacy, and satisfaction, as

proposed by the International Organization for Standardization; the use of the app was analysed

with these users to quantify the results of the project. three main tests were conducted with the

users:

1. A comparison of food-searching methods: using a general, broadly-trained image

classifier to search for foods Vs. the use of text-search features.

2. A comparison of the use of the Bluetooth kitchen and the use of text for recording

weight values.

3. A comparison of application approaches: the use of the writer’s application Vs. the

use of text the popular “Lose It!” application.

Anonymised information of the users is presented in Table 16, while the results of the first test

can be seen in Table 17. The first test was conducted with an unoptimized TensorFlow instance

of the MobileNet image classifier, trained on 1000 classes from the ImageNet Challenge. This

was used for the testing as it was deemed as the most appropriate model for testing purposes.

In future builds of this application, with fully optimised models trained for large arrays of food

types, the computational times should be similar to the model used here. If the models

developed in the retraining process were used here, where the models never exceeded nine

classes, this could lead to an imbalanced result. The computational speed of a classifier with

only 9 classes would be significantly faster than one with 1000 classes.

5.3 Usability Testing Chapter 5 - Optimisation, Testing, and Evaluation

84

Table 16: Anonymised Participant Information

User

ID

Age

Group

Gender Mobile OS Profession Level of Education

Attained – [Pursuing]

1 55+ M Android Sales N/A

2 45 – 54 F iOS IT Clinical Lead MSc – [M.Sc]

3 18 – 26 F Android Product Manager LL.B. Pol. Sc. –

[M.Sc]

4 18 – 26 F Android University Student BSc – [M.Sc]

5 18 – 26 M iOS Secondary School

Student

Junior Cert - [Leaving

Cert]

6 18 – 26 F Android University Student B.A

7 27 - 35 M Android University Student Leaving Cert – [B.Sc]

When measuring the efficiency of the image classifier, it was analysed in comparison to relying

on text input to search for the food items. Each tester was assigned with the task of logging the

same meal twice: once while using the image classifier and once while using the smartphone’s

keyboard. The order in which each user logged the meals was randomised to compensate for

the testers learning how to use the application. For simplicity, the meal logged was the same

for both tests: 100g of apple, 200g of oranges, and 300g of banana. These items were chosen

as it was confirmed that the classes of apple, oranges and banana were included in the

pretrained version of the MobileNet classifier.

Table 17: Results U&A Test 1

User

ID

Logging Time - Text (s) Logging Time –

Classifier (s)

Time Difference (%)

1 49.87 43.44 -12.89

2 58.55 40.43 -30.95

3 48.20 36.40 -24.48

4 55.47 43.53 -21.53

5 39.98 43.42 8.6

6 31.33 28.23 -9.89

7 34.19 30.78 -9.97

5.3 Usability Testing Chapter 5 - Optimisation, Testing, and Evaluation

85

The second set of tests were held three weeks after the first. This was performed with the same

group as the first test, with a focus on the effect of the Bluetooth scale.

Table 18: Results U&A Test 2

User

ID

Logging Time - Text (s) Logging Time – BT

Scale (s)

Time Difference (%)

1 123.21 58.85 -52.24

2 137.08 68.88 -49.75

3 87.72 48.84 -44.32

4 N/A N/A N/A

5 56.44 37.75 -33.11

6 79.80 88.81 11.29

7 N/A N/A N/A

The final set of tests were a comparison of the writer’s application to the popular diet

management application, “Lose It!”.

Table 19: Results U&A Test 3

User

ID

Logging Time – Lose It! Logging Time – BT

Scale (s)

Time Difference (%)

1 144.98 54.21 -62.60

2 157.83 59.98 -61.99

3 96.27 49.82 -48.24

4 N/A N/A N/A

5 63.02 51.21 -18.74

6 102.17 51.18 -49.9

7 N/A N/A N/A

5.4 Retraining the Image Classifier Chapter 5 - Optimisation, Testing, and Evaluation

86

5.4 Retraining the Image Classifier

The process of retraining the image classifier’s final layer was analysed to develop an

understanding of the minimum requirements for accurate classification. The aim of these

experiments was to find a minimum viable number of samples which could be used in an initial

build of a broader, food-focused database. Testing began by incrementally increasing sample

sizes for each class, with initial tests focusing on five classes of food: apple, orange, banana,

tomato, and bell pepper. From initial testing it was found that a minimum of approximately

100 samples should be used. If less than 100 samples are used in each class, the results proved

to be unusable. It was common for the training process to fail with less than 100 samples also.

This is due to TensorFlow’s training process, whereby an initial analysis of the images splits

each class into 3 sets: train, test, and validation. Without enough samples the validation set

would often be assigned none of the samples, which would end the training process.

Tests were then done where the classifier was trained with only 100 samples of each class, and

then the number of food classes was incrementally increased. The writer developed an

independent sample set with which this was tested. The process was split into 5 experiments

with 5 tests in each. In each of the 5 tests within these experiments was a sample set of training

data. For Experiment 1, the training data had 5 classes, for Experiment 2 there were 6 classes.

This was incremented up to a fifth experiment, which had 9 classes in each of its five sample

sets. The first five classes are those mentioned above: apples, oranges, banana, tomato and bell

pepper. By Experiment 5 this was increased to include 100 samples each of raspberries,

blackberries, blueberries, and strawberries. In total, 4500 sample pictures were used in the

training process, while a further 45 samples were used in the testing process (5 samples of each

of the 9 classes).

This was a monumental task which required a substantial amount of processing power and

produced a significant amount of data. The findings, however, were not conclusive enough to

warrant an analysis here, so they will be summarised in the upcoming section. A link to a folder

containing this data will be provided in Appendix B.

5.4 Retraining the Image Classifier Chapter 5 - Optimisation, Testing, and Evaluation

87

5.4.1 TensorFlow Training Summary

These tests were all performed on an unoptimized version of the image classifier. The one

conclusion that can be made from the process is that, with more classes added to the classifier,

the computational performance decreases. Each set of experiments increased the computational

time, but the analysis of training methods of the system for accuracy were somewhat

inconclusive. The amount of data used is relatively arbitrary, as the quality of data appears to

be the biggest influence in the accuracy and reliability of the training. For instance, the most

accurate training set was the one which showed the greatest variety amongst each class. This

indicated that the quality of samples may be more relevant than the number of samples. Further

testing was done whereby the sample rate was increased, from the standard 500 steps up to

8000 steps. These training methods produced more accurate results on the same sample sets,

however they are computationally expensive, with some training processes taking over six

hours to compute.

P a g e | 88

6 Discussion

Chapter 6 - Discussion

The work of this project has shown a novel and effective approach to diet management

applications. The methods used have provided a measurable improvement in the user

experience and confirmed the hypothesis set forth by the writer. It should be noted that it is

only a confirmation of a hypothesis however, with the analysis performed in this study being

equivalent to an alpha-testing phase. To further this work, a beta-testing phase is required. The

results are promising in terms of accessibility also, but further work would be required to

confirm this.

This project progressed from early work which was solely focused on developing the meal-

logging features, such as local device storage and the retrieval of nutritional information, to the

later work of implementing the image classification and Bluetooth capabilities. Overall, the

main objectives of the project were achieved, however further analysis is needed regarding the

training of image classifiers. The resources required to compute these training systems were

much more significant than initially anticipated. Ultimately, the classifier retraining was

outside of the scope of this project, and this should have been identified sooner. That said, the

knowledge gained through the experience of the process was useful, even though the data

collected from the process was not. The training process required Linux based programming,

which was a new area for this writer. Better still, the lessons learned from the retraining process

could be implemented to better use, on a grander scale in future. And, with this basis of research

and a prototype developed, further work can and will be performed.

6.1 Ethical Considerations Chapter 6 - Discussion

89

6.1 Ethical Considerations

In the design of a product an engineer must consider all appropriate ethical implications and

ensure that the design meets the necessary requirements and guidelines. As this product

intersects with the healthcare industry, the ethical guidelines and principles of this industry

should also be considered. Within engineering, ethical considerations are a prominent feature

of the profession. Without the proper ethical considerations, the risk of producing unethical

results is apparent. Take for example the recent Facebook-Cambridge Analytica data scandal.

This is a case where software was engineered to mine the data of Facebook users and the

entirety of their network [103]. The data breach was originally reported to have leaked the

personal information of over 50 million Facebook users, which was used to influence political

campaigns such as the Trump campaign [104] and the Brexit Vote Leave campaign [105].

Facebook has since announced that the number of people affected by the data breach could be

up to 87 million people [106]. One report, which emphasises the virality of Cambridge

Analytica’s engineering design, illustrates how the interaction between this software and only

335 users may have led to the exposure of the personal information of over 550,000 users [107].

The Institution of Engineers of Ireland (or Engineers Ireland) has developed a Code of Ethics

which was updated on the 1st of January 2018 [108]. This Code of Ethics outlines the

requirements of the engineering professional to meet social and environmental obligations, as

well as guidelines for maintaining a professional standard. It also addresses the responsibility

of the engineering professional in regard to their relations with colleagues, clients, employers,

and society in general. In the section regarding an engineer’s relations with others, Code 1.9

states:

“At all times in their relations with the public, Members shall apply their skill and

experience to the common good and the advancement of human welfare with proper

regard for the safety, health and welfare of the public. A Member shall not engage in

any activity which he/she knows or has reasonable grounds for believing is likely to

result in a serious detriment to any person or persons.”

This code is relevant to all mobile applications which are publicly released and openly

available. Similarly, Code 2.1 bears relevance to mobile applications:

6.1 Ethical Considerations Chapter 6 - Discussion

90

“Members shall at all times be conscious of the effects of their work on the health and

safety of individuals and on the welfare of society. While acting as designers, operators

or managers on projects, members shall strive to eliminate risks to health and safety

during all project stages. Members shall also undertake to minimise or eliminate any

adverse impact on the natural environment arising from the design and execution of all

project work that they are engaged in.”

The above Codes draw attention to the responsibility and obligation of the engineering

professional to produce their work with others in mind. Those affected or who have the

potential to be affected by the result of an engineer’s efforts should always be considered. Code

2.1 ends with reference to protecting the environment. Code 2.3 expands upon this:

“Members shall strive to accomplish the objectives of their work with the most efficient

consumption of natural resources which is practicable economically, including the

maximum reduction in energy usage, waste and pollution.”

This Code is particularly relevant to mobile applications and software development. Improper

practices and poor software development principles could potentially lead to energy waste. For

example, excessive programmatic procedures could perform unnecessary computations, or an

application could be poorly designed so that data requests are made, or other services are used

when they are not required. These actions would cause the mobile device’s battery to drain

faster, requiring more frequent recharging. In today’s energy generation climate, this is likely

to result in greenhouse gas emissions and an adverse effect on the environment. It also has

another, “knock-on” effect in that it reduces the lifespan of the smartphone’s battery

unnecessarily, as each recharge affects battery life [109]. This could result in a replacement

being needed or, in the case of smartphones with non-replaceable batteries, an entirely new

device. Due to the necessity for adequate recycling of Lithium-ion batteries, this could result

in additional harm to the environment if the batteries are improperly disposed of. Every

measure was taken in the development of this application with this ethical consideration in

mind. The implementation of software which is new to the writer involved researching the best

practices for their use. An example of this is in the use of the new Android Room data

persistence library, as the computational effect of annotating single methods or the entire class

with the @TypeConverter was considered. These actions were performed with respect to

another ethical obligation outlined by Engineers Ireland in Code 3.4:

6.1 Ethical Considerations Chapter 6 - Discussion

91

“Members shall carry out their work with due care, skill, diligence and expedition

consistent with good practice.”

Best practices in software development were deployed throughout this project, and careful

consideration was made to the design and execution of the system. This was considered as the

due diligence required to perform this project. In other instances, the lack of due diligence in

the engineering process has led to serious ethical implications. In the Health Service

Executive’s (HSE) final report of what is known as the “NIMIS ‘<’ Symbol Incident”, poor

software development practices and a lack of care and diligence produced a significant incident

which “had the potential to cause patient harm” [110]. The National Integrated Medical

Imaging System, or NIMIS, is a national system that was developed by the HSE as an internal

platform for requesting medical imaging examinations. NIMIS is comprised of multiple

subsystems for managing the medical examination requests, and the technical issue which

caused the incident arose from a “less than” symbol (<) being recorded in some aspects of the

system, but not transferring to others. The HSE gives an example of the inherent risk of this

technical issue: if a clinician was to report that a patient had a < 50% stenosis in their internal

carotid artery, this would appear downstream as a report that the patient had a 50% stenosis,

which could result in the incorrect recommendation to undergo immediate surgery. This

incident, which is reported by the HSE as being the first worldwide instance where a technical

issue had such a substantial effect on a national imaging system, resulted in 24,275 erroneous

examination reports. This incident hearkens to the incidents involving the Therac-25 radiation

therapy machine between 1985 and 1987 [111]. This was a software-controlled machine which,

due to poor software design, resulted in multiple deaths and injuries due to radiation overdose.

The scale and potential for harm of the NIMIS incident, as well as the unfortunate incidents

produced by the Therac-25, accentuate the responsibility of the engineer to ensure that they

perform their work with due care and diligence.

Regarding the ethical guidelines of the healthcare industry, multiple sources were researched

and analysed. The Declaration of Helsinki [112] outlines the ethical principles for research with

human subjects. While it is directed at the medical community and experiments which focus

on the research of humans in clinical settings, it has relevance to this project. The document

outlines that the researcher must “ensure respect for all human subjects”, while protecting the

“privacy and confidentiality of the personal information of the research subjects”. This

amplifies the importance of anonymising the data of the users involved in the testing process.

The Nuremberg Code [113] is another document which is relevant to this project. It was

6.1 Ethical Considerations Chapter 6 - Discussion

92

originally developed over the course of the Nuremberg Trials in 1947 where members of the

Nazi party were made accountable for war crimes they had committed [114]. The document

consists of 10 points of ethical considerations for research involving human participants,

however only one of these points are prominently relevant to the research performed in this

project. The first point made in the document underlines the responsibility and duty of the

researcher to ensure that the participants have informed consent regarding their participation

in the research. As such, the writer explained the study to the participants and obtained a signed

consent form for each participant.

Information governance is another area of focus in the ethical considerations of both the

healthcare and software development industries. The American Health Information

Management Association (AHIMA) sets forth a list of ethical principles for organisations

which deal with health information [115]. They insist that any organisation which deals with a

person’s health information, regardless of the organisations role, must make a “firm

commitment” to responsibly and ethically handle the personal information of its users. The

ethical principles they propose are to ensure accountability, transparency, and reliability when

dealing with user’s data, while taking measures to uphold the integrity of that data. AHIMA

asserts that an organisation which stores health information has an ethical responsibility to

ensure that the user’s data is available to them. They highlight the responsibility of an

organisation to both effectively preserve and dispose of data where requested, and that

appropriate data administration efforts should be made. This includes routinely backing up data

to avoid losses in the cases of malfunctions, data corruption, or disaster, as well as the effective

migration of data when upgrading systems or replacing obsolete technologies. They also

highlight the importance of a well-designed and properly maintained database with regard to

making a user’s data actively and effectively accessible.

The remaining ethical principles which AHIMA promotes, the principles of protection and

compliance, are relevant to virtually all mobile applications, regardless of the industry or

setting in which they are applied. AHIMA calls attention to the responsibility of the engineer

and organisation which ensures that any user’s data is protected from the moment it is created

to the moment it is destroyed, regardless of interruptions in service or otherwise. A particular

emphasis is placed upon personally identifiable information as this is the most sensitive user

data, with the greatest potential for ethical misuse. Taylor [116] accounts of how the UK

National Health Service had sold the data of 47 million patients to insurance companies, with

which the insurance companies used to adjust premiums. Taylor also discusses a case of how,

6.1 Ethical Considerations Chapter 6 - Discussion

93

in 2011, Harvard researcher Latanya Sweeney bought access to anonymised patient data,

however she could “confidently identify” 35 patients within this database from news reports of

the area containing the word “hospitalisation”. In ten of these cases, the anonymised data

contained sensitive information, such as “a patient’s venereal disease, drug dependency,

alcohol use or payment issues”.

The area of data protection intersects with the AHIMA’s principle for compliance, and

Engineers Ireland’s Code of Ethics, with Code 3.5 stating:

“Members shall be familiar with the substance and intent of national, European Union

and other legislation relevant to their field of engineering practice.”

The Irish Data Protection Act of 1988 [117], the Amendment to this Act in 2003 [118], as well

as the ePrivacy Regulations of 2011 [119] are the national legislations relevant to this project.

The incoming General Data Protection Regulation (GDPR) [120]is also highly relevant to the

future of this project. These legislations state that the legal obligation which a data controller

has to protect and maintain the data of the users it serves, as well as requirements for the

disposition of data. These documents focus on the legal requirements regarding the collection

and handling of personal data.

The application developed in the writer’s work, in its current form, does not collect any user

information. However, this type of application typically includes profile creation for saving

data to online databases, or to allow social interactions through the application. With this

implemented, the onus is upon the service provider (i.e. the writer or a subsequent company if

the application is publicly launched) to take the necessary measures to ensure that this data is

not compromised. The utmost care and consideration must be taken when designing and

implementing security systems for the databases. That said, even without user profile creation

and user information being stored in online databases, this application could be manipulated to

compromise a user’s data.

In the current version of the writer’s application, no security features have been implemented.

This lack of security is accompanied by a series of sensitive permission requirements which

are needed to use the application: to save data, the application requires both read and write

access to the device’s storage; to retrieve information from the USDA database, the application

requires internet access; for use with the Bluetooth kitchen scale the application requires both

Bluetooth services access, as well as the coarse location of the device. While the coarse location

of the device is necessary for the Bluetooth implementation method used in the current version

6.1 Ethical Considerations Chapter 6 - Discussion

94

of the application, this may be removed in future versions. Nevertheless, in its current form,

this application has the potential to leak the information of any user. A hacker could potentially

connect to the application over Bluetooth, access the entire contents of the smartphone’s

storage, and transmit this over the internet.

Point 3.3 of the Engineers Ireland Code of Ethics:

“Members shall accept and perform only work for which they are qualified and

competent to undertake and shall obtain whatever advice and assistance is necessary

to discharge this responsibility.”

In line with the writer’s ethical obligation, the writer acknowledges the limitations of this

project, as well as the writer’s ability. The writer has no experience in the design or

implementation of security systems and, as such, it is paramount that adequate assistance is

sought when this project is further developed to a commercial level. The aim of the writer is

for this project to progress to a stage where it is feasible to hire another engineer with

experience in the field of security and data protection. In the absence of this capability, it will

be necessary for the writer to find a supervisor who can advise on this topic while the writer

undertakes training to account for this deficit, if the application is to be published. Another

limitation of the project which should be noted is the potential for misuse. All products

designed have a potential for misuse, however misuse of this application could arise amongst

users with eating disorders. For example, an anorexic person could misuse this application by

ensuring they maintain a caloric intake which is below their basal metabolic rate. Further

research is needed to identify the optimal method for addressing this issue, and the writer will

collaborate with Irish Platform for Patient Organisations, Science and Industry (IPPOSI) has

in this research. For anorexic users, the current proposition is to implement a warning that

triggers if the abovementioned misuse is detected, alerting the user of the harm of their actions.

The efficacy of this will hopefully be confirmed in the coming months, and the writer also

hopes to work with IPPOSI to conduct a study with Dyslexic users.

P a g e | 95

7 Conclusions

Chapter 7 - Conclusions

This work produced an application which has met the intended project objectives. The writer’s

hypothesis was confirmed by successfully implementing image classification and a Bluetooth

kitchen scale with a typical calorie-counting application format. The evaluation of the

application, which is a user-centred product, was performed through the usability testing. The

results of these tests proved that the innovative technologies used can improve upon existing

solutions in the field of diet-management applications. In the process of this work, the relevant

literature was addressed as well as the ethical implications of the work.

7.1 Future Work Chapter 7 - Conclusions

96

7.1 Future Work

The work completed for this project has produced the first iteration of this application, and the

writer intends to further improve the application and prepare it for a commercial launch. The

application is far from finished, and the work performed in this project is essentially a proof of

concept. With the prototype built and some user feedback received, the writer intends to

iteratively improve upon the current version. The first improvement will be to remove requests

to the application’s database from the main thread of the application. While a relatively trivial

data is currently retrieved from the device’s storage, it is still considered best practice to

perform all database requests on background threads. This is because database requests made

on the main thread can affect the UI [121]. Performing these requests on main threads could

affect the performance in future builds also, as the writer intends to implement localised food

and nutrient databases to facilitate offline meal logging, or meal logging in areas with poor

internet connectivity.

Additional features are planned for the application, such as visual displays of daily and weekly

nutritional values. As discussed in the literature review, bar charts are an effective means if

transmitting health data, particularly for diabetic users. As such bar charts will be implemented,

but the use of these will be compared to pie charts in a user-focused case study. The writer also

intends to extend the meal logging capabilities of the application to facilitate those who eat

more than 3 main meals a day. A diet of 6, smaller meals is common amongst the bodybuilding

and weight-loss communities [122] [123] and some clinicians recommend 6 – 10 small meals

to alleviate the symptoms of some diseases [124].

Once the application has been tested, improved, and optimised, case studies and customer

validation will be performed in other countries. With North America currently encapsulating

the largest proportion of the market share for calorie-counting and meal-logging applications

the writer plans to conduct research there initially. A focus will be placed upon finding active

users of other application in this category to conduct the case studies. The aim will be to gather

valuable and precise feedback on the writer’s work, as well as the points of frustration that exist

in current applications. While this work has made the meal-logging process more efficient and

user-friendly, there could be other problems within this category of application that could be

solved. Efforts will also be made to develop an understanding of the user’s perspective and the

context of use for these applications. Following user validation, research will be performed on

7.1 Future Work Chapter 7 - Conclusions

97

the market and a route to market for North America will be developed, before researching and

performing customer validation in other markets.

For each market entered, a localised version will need to be created. For North American

markets it could be reasonably assumed that the same version as produced in Ireland could be

applicable and effective there, however the writer aims to research this first. An objective that

will be tackled before other markets, however, will be to improve the user experience for

Dyslexic and illiterate users. For these users, the removal of text where possible is a necessity.

In terms of purely technical work, the application will be expanded to support a broader range

of API levels, allowing the application to be used on older or lower-level devices. The use of

a cross-platform framework such as Google’s Flutter or Facebook’s React, which allow

simultaneous deployment on both Android and iOS, will be explored. Further tests will also be

performed on the retraining of image classifiers, and a complete, food-focused image

classification model will be developed in the coming months.

P a g e | 98

Appendices

Appendix A - Android Project Files

The entire project can be found at the following Github link:

https://github.com/LukeScales1/FYP

Appendix B - Classifier Retraining Results

All data pertaining to the retraining process can be found at:

https://drive.google.com/drive/u/0/folders/1sYbecSiDOrZB7wUMuiajunt19htCPhbm

https://github.com/LukeScales1/FYP
https://drive.google.com/drive/u/0/folders/1sYbecSiDOrZB7wUMuiajunt19htCPhbm
https://drive.google.com/drive/u/0/folders/1sYbecSiDOrZB7wUMuiajunt19htCPhbm

P a g e | 99

References

[1] Reuters, “mHealth Market Worth $23 Billion in 2017 and Estimated to Grow at a CAGR

of more than 35% over the next three years,” Orbis Research, 18 April 2017. [Online].

Available: https://www.reuters.com/brandfeatures/venture-capital/article?id=4640.

[Accessed 2018 March 13].

[2] Statista, “mHealth (mobile health) industry market size projection from 2012 to 2020 (in

billion U.S. dollars),” 2013. [Online]. Available:

https://www.statista.com/statistics/295771/mhealth-global-market-size/. [Accessed

2018 March 13].

[3] Zion Market Research, “Global mHealth Market Set for Rapid Growth, to Reach USD

102.43 Billion by 2022,” 12 December 2016. [Online]. Available:

https://www.zionmarketresearch.com/news/global-mhealth-market. [Accessed 08 April

2018].

[4] World Health Organisation, “Controlling the global obesity epidemic,” [Online].

Available: http://www.who.int/nutrition/topics/obesity/en/. [Accessed 12 March 2018].

[5] World Health Organisation, “Overweight and obesity,” 2017. [Online]. Available:

http://www.who.int/gho/ncd/risk_factors/overweight/en/. [Accessed 23 March 2018].

[6] A. Must, J. Spadano and E. H. Coakley, “The Disease Burden Associated With

Overweight and Obesity,” 27 October 1999. [Online]. Available:

https://jamanetwork.com/journals/jama/fullarticle/192030. [Accessed 24 March 2018].

[7] World Health Organisation, “mHealth: New horizons for health through mobile

technologies,” 2011. [Online]. Available:

http://www.who.int/goe/publications/goe_mhealth_web.pdf. [Accessed 20 March

2018].

 References

100

[8] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84-90,

2017.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke

and A. Rabinovich, “Going deeper with convolutions,” ArXiv, 2014.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy

and e. al, “ImageNet Large Scale Visual Recognition Challenge,” International Journal

of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

[11] L. Columbus, “2017 Roundup Of Internet Of Things Forecasts,” Forbes, 10 December

2017. [Online]. Available:

https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-

things-forecasts/#3ddc2e51480e. [Accessed 8 April 2018].

[12] C. Hill, “The 5 most (and least) popular diet and fitness apps,” Market Watch, 20 January

2015. [Online]. Available: https://www.marketwatch.com/story/the-5-most-and-least-

popular-diet-and-fitness-apps-2015-01-06. [Accessed 8 April 2018].

[13] Google Play, “Lose It! - Calorie Counter,” Google, [Online]. Available:

https://play.google.com/store/apps/details?id=com.fitnow.loseit&hl=en. [Accessed 8

April 2018].

[14] P. Langley, “Editorial: On Machine Learning,” Machine Learning, vol. 1, no. 1, pp. 5-

10, 1986.

[15] R. J. Passonneau, V. Bhardwaj, A. Salleb-Aouissi and N. Ide, “Multiplicity and word

sense: evaluating and learning from multiply labeled word sense annotations,” Language

Resources and Evaluation, vol. 46, no. 2, pp. 219-252, 2012.

[16] A. C. o. Pearls, “Machine Learning: What and Why?,” Tumblr, San Francisco, 2013.

[17] Genetic Programming, “What We Mean by “Machine Intelligence”,” Stanford, 2003.

[18] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM

Journal, vol. III, no. 3, pp. 535-, 1959.

 References

101

[19] S. Byford, “AlphaGo retires from competitive Go after defeating world number one 3-

0,” The Verge, 27 May 2017. [Online]. Available:

https://www.theverge.com/2017/5/27/15704088/alphago-ke-jie-game-3-result-retires-

future. [Accessed 1 April 2018].

[20] C. Cadell, “Google AI beats Chinese master in ancient game of Go,” Reuters, 23 May

2017. [Online]. Available: https://www.reuters.com/article/us-science-intelligence-

go/google-ai-beats-chinese-master-in-ancient-game-of-go-idUSKBN18J0PE. [Accessed

30 March 2018].

[21] J. Tromp and G. Farneback, “https://tromp.github.io/go/gostate.pdf,” Github, Princeton,

2016.

[22] R. Kohavi and F. Provost, “On Applied Research in Machine Learning,” Machine

Learning, vol. 30, no. 2-3, pp. 127-132, 1998.

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, et al,

“TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,”

Google Research, 9 Novemeber 2015. [Online]. Available:

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/4516

6.pdf. [Accessed 2018 March 24].

[24] P. Brazdil and C. Giraud-Carrier, “Metalearning and Algorithm Selection: progress, state

of the art and introduction to the 2018 Special Issue,” Machine Learning, vol. 107, no.

1, pp. 1-14, 2018.

[25] D. Tomé, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi and S. Tubaro, “Deep

Convolutional Neural Networks for pedestrian detection,” Signal Processing: Image

Communication, vol. 47, no. 1, pp. 482-489, 2016.

[26] Y. Taigman, et al., “Deepface: closing the gap to human-level performance in face

verification,” in Conference on Computer Vision and Pattern Recognition (CVPR),

Columbus, 2014.

[27] C. Lu and X. Tang, “Surpassing human-level face verification performance on LFW with

GaussianFace,” in 29th AAAI Conference on Artificial Intelligence (AAAI), Austin, 2014.

 References

102

[28] Y. Sun, X. Wang and X. Tang, “Deep learning face representation from predicting 10,000

classes,” in Conference on Computer Vision and Pattern Recognition (CVPR),

Columbus, 2014.

[29] M. Matsugu, K. Mori, Y. Mitari and Y. Kaneda, “Subject independent facial expression

recognition with robust face detection using a convolutional neural network,” Neural

Networks, vol. 16, no. Special Issue, pp. 555-559, 2003.

[30] H. Ting, B. Yong and S. M. Mirhassani, “Self-Adjustable Neural Network for speech

recognition,” Engineering Applications of Artificial Intelligence, vol. 26, no. 9, pp. 2022-

2027, 2013.

[31] O. Abdel-Haimid, A. Mohamed, H. Jiang, L. Deng, G. Penn and D. Yu, “Convolutional

Neural Networks for Speech Recognition,” IEEE/ACM Transactions on Audio, Speech,

and Language Processing, vol. 22, no. 10, pp. 1533-1545, 2014.

[32] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series.,”

1995. [Online]. Available: http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-95a.pdf.

[Accessed 6 April 2018].

[33] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat's striate

cortex,” The Journal of Physiology, vol. 148, no. 3, pp. 574-591, 1959.

[34] K. Fukushima, “Neocognitron: a self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position,” Biological Cybernetics, vol. 36,

no. 4, pp. 193-202, 1980.

[35] K. Fukushima, “Neocognitron for handwritten digit recognition,” Neurocomputing, vol.

51, no. 1, pp. 161-180, 2003.

[36] K. Fukushima, “Neocognitron trained with winner-kill-loser rule,” Neural Networks, vol.

23, no. 7, pp. 926-938, 2010.

[37] K. Fukushima, “Training multi-layered neural network neocognitron,” Neural Networks,

vol. 40, no. 1, pp. 18-31, 2013.

 References

103

[38] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International

Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[39] L. Zheng, Y. Yang and Q. Tian, “SIFT Meets CNN: A Decade Survey of Instance

Retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40,

no. 5, pp. 1224-1244, 2018.

[40] J. Sánchez, F. Perronnin, T. Mensink and J. Verbeek, “Image Classification with the

Fisher Vector: Theory and Practice,” International Joutrnal of Computer Vision, vol.

105, no. 3, pp. 222-245, 2013.

[41] J. Wang, P. Liu, M. She, S. Nahavandi and A. Kouzani, “Bag-of-words representation

for biomedical time series classification,” Biomedical Signal Processing and Control,

vol. 8, no. 6, pp. 634-644, 2013.

[42] G. Csurka, C. R. Dance, L. Fan, J. Willamowski and C. Bray, “Visual categorization with

bags of keypoints,” Xerox Research Centre Europe, Meylan, 2004.

[43] S. Xu, T. Feng and D. Li, “Object Classification of Aerial Images With Bag-of-Visual

Words,” IEEE Geoscience and Remote Sensing Letters, 2010, Volume 7, Issue 2, vol. 7,

no. 2, pp. 366-370, 2010.

[44] E. Karakasis, A. Armanatiadis and A. Gasteratos, “Image moment invariants as local

features for content based image retrieval using the Bag-of-Visual-Words model,”

Pattern Recognition Letters, 04/2015, Volume 55, vol. 55, no. 1, pp. 22-27, 2015.

[45] J.M. dos Santos, E.S. de Moura, A.S. da Silva, R. da Silva Torres, “Color and texture

applied to a signature-based bag of visual words method for image retrieval,” Multimedia

Tools and Applications, vol. 76, no. 15, pp. 16855-16872, 2016.

[46] H. Wu, B. Liu, W. Su, Z. Chen, W. Zhang, X. Ren and J.Sun, “Optimum Pipeline for

Visual Terrain Classification Using Improved Bag of Visual Words and Fusion

Methods,” Journal of Sensors, vol. 2017, no. 1, pp. 1-25, 2017.

[47] Y. LeCun, “"Hi Serge",” 26 June 2013. [Online]. Available:

https://plus.google.com/+YannLeCunPhD/posts/gurGyczzsJ7. [Accessed 23 March

2018].

 References

104

[48] Y. LeCun, “Yann LeCun's Publications,” 2014. [Online]. Available:

http://yann.lecun.com/exdb/publis/index.html#fulllist. [Accessed 2018 April 7].

[49] Y. LeCun, L. Najman, C. Couprie and C. Farabet, “Scene Parsing with Multiscale

Feature Learning, Purity Trees, and Optimal Covers,” in Proc. International Conference

on Machine learning (ICML'12), Edinburgh, 2012.

[50] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” 3 December 2012. [Online]. Available:

https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf. [Accessed 23 March 2018].

[51] A. G. Howard, et. al, “MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision,” ARXIV, 2017.

[52] J. J. Garrett, The elements of user experience: user-centered design for the Web,

Indianapolis: New Riders, 2002.

[53] Google Scholar, “Citations for J.J. Garret's "The elements of user experience: user-

centered design for the web and beyond",” [Online]. Available:

https://scholar.google.com/scholar?um=1&ie=UTF-

8&lr&cites=5423227805243159339. [Accessed 6 April 2018].

[54] K. Harris, S. Baron and C. Parker, “Understanding the Consumer Experience: It's 'Good

To Talk',” Journal of Markerting Management, vol. 16, no. 3, pp. 111-127, 2000.

[55] S. Smith, G. C. Smith and Y. Chen, “A KE-LSA approach for user-centered design,”

Journal of Intelligent Manufacturing, vol. 24, no. 5, pp. 919-933, 2013.

[56] J. A. Bacha, “Mapping Use, Storytelling, and Experience Design: User-Network

Tracking as a Compnent of Usability and Sustainability,” Journal of Business and

Technical Communication, vol. 32, no. 2, pp. 198-228, 2018.

[57] C. Lin and L. Cheng, “Product attributes and user experience design: how to convey

product information through user-centered service,” Journal of Intelligent

Manufacturing, vol. 28, no. 7, pp. 1743-1754, 2017.

[58] ISO (the International Organization for Standardization) , “ISO 9241-11:2018(en):

Ergonomics of human-system interaction — Part 11: Usability: Definitions and

 References

105

concepts,” March 2018. [Online]. Available:

https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en. [Accessed 06 April 2018].

[59] J. Applen and S. Stephens, “Digital Humanities, Middleware, and User Experience

Design for Public Health Applications,” Communication Design Quarterly Review, vol.

V, no. 3, pp. 24-34, 2017.

[60] J. Jones, “Information Graphics and Intuition: Heuristics as a Techne for Visualization,”

Journal of Business and Technical Communication, vol. 29, no. 3, pp. 284-313, 2015.

[61] B. Choi, I. Lee and K. Kim, “Culturability in Mobile Data Services: A Qualitative Study

of the Relationship Between Cultural Characteristics and User-Experience Attributes,”

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION, vol. 20, no.

3, pp. 171-206, 2006.

[62] A. Marcus and E. W. Gould, “Crosscurrents: Cultural dimensions and global Web user-

interface design,” Interactions, vol. 7, no. 4, pp. 32-46, 2000.

[63] K. Saint-Amant, “Introduction to the special issue: Cultural considerations for

communication design: integrating ideas of culture, communication, and context into

user experience design,” Communication Design Quarterly Review, vol. 4, no. 1, pp. 6-

22, November 2015.

[64] Z. Hildon, D. Allwood and N. Black, “Impact of format and content of visual display of

data on comprehension, choice and preference: a systematic review,” International

Journal for Quality in Health Care, vol. 24, no. 1, pp. 55-64, 2012.

[65] Android Developers, “Architecture Components > Release Notes,” Google, [Online].

Available: https://developer.android.com/topic/libraries/architecture/release-notes.html.

[Accessed 29 March 2018].

[66] Android Developers, “Android Studio: The Official IDE for Android,” Google, [Online].

Available: https://developer.android.com/studio/index.html. [Accessed 29 March 2018].

[67] JetBrains, “IntelliJ IDEA: The Java IDE for Professional Developers by JetBrains,”

[Online]. Available: https://www.jetbrains.com/idea/.

 References

106

[68] Android Developers, “Meet Android Studio,” Google, [Online]. Available:

https://developer.android.com/studio/intro/index.html. [Accessed 2018 March 28].

[69] Android Developers, “Android Studio Release Notes > Older Releases,” Google,

[Online]. Available: https://developer.android.com/studio/releases/index.html#older-

releases. [Accessed 29 March 2018].

[70] Android Developers, “Android Studio Release Notes,” Google, [Online]. Available:

https://developer.android.com/studio/releases/index.html. [Accessed 29 March 2018].

[71] M. Cleron, “Android Announces Support for Kotlin,” Google, 17 May 2017. [Online].

Available: https://android-developers.googleblog.com/2017/05/android-announces-

support-for-kotlin.html. [Accessed 25 March 2018].

[72] Android Developers, “Activity,” Google, [Online]. Available:

https://developer.android.com/reference/android/app/Activity.html. [Accessed 25

March 2018].

[73] Android Developers, “android.database.sqlite,” Google, [Online]. Available:

https://developer.android.com/reference/android/database/sqlite/package-

summary.html. [Accessed 29 March 2018].

[74] The SQLite Development Team, “About SQLite,” [Online]. Available:

https://www.sqlite.org/about.html. [Accessed 29 March 2018].

[75] w3schools, “SQL,” [Online]. Available: https://www.w3schools.com/sql/default.asp.

[Accessed 29 March 2018].

[76] Google Developers, “Android Persistence codelab,” Google, [Online]. Available:

https://codelabs.developers.google.com/codelabs/android-persistence/#0. [Accessed 29

March 2018].

[77] S. Pichai, “TensorFlow: smarter machine learning, for everyone,” Google, 9 November

2015. [Online]. Available: https://googleblog.blogspot.ie/2015/11/tensorflow-smarter-

machine-learning-for.html. [Accessed 23 March 2018].

[78] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato,

A. Senior, P. Tucker, K. Yang and A. Y. Ng, “Large Scale Distributed Deep Networks,”

 References

107

2012. [Online]. Available:

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/4056

5.pdf. [Accessed 14 March 2018].

[79] TensorFlow, “TensorFlow In Use,” [Online]. Available:

https://www.tensorflow.org/about/uses. [Accessed 24 March 2018].

[80] TensorFlow, “Welcome to the TensorFlow Community,” [Online]. Available:

https://www.tensorflow.org/community/welcome.

[81] TensorFlow, “Computation using data flow graphs for scalable machine learning,”

Google, [Online]. Available: https://github.com/tensorflow/tensorflow. [Accessed 24

March 2018].

[82] TensorFlow, “Introduction to TensorFlow Lite,” [Online]. Available:

https://www.tensorflow.org/mobile/tflite/.

[83] TensorFlow, “tensorflow/tensorflow/contrib/lite/,” [Online]. Available:

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite. [Accessed

24 March 2018].

[84] Nutrient Data Laboratory, USDA, “Welcome to the USDA Food Composition

Databases,” United States Department of Agriculture, [Online]. Available:

https://ndb.nal.usda.gov/ndb/. [Accessed 28 March 2018].

[85] Android Developers, “The Activity Lifecycle,” Google, [Online]. Available:

https://developer.android.com/guide/components/activities/activity-lifecycle.html.

[Accessed 29 March 2018].

[86] Oracle, “Interface Comparable<T>,” [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/lang/Comparable.html. [Accessed 29

March 2018].

[87] Food Safety Authority of Ireland, “The Science of Salt & Health,” 22 April 2016.

[Online]. Available:

https://www.fsai.ie/science_and_health/salt_and_health/the_science_of_salt_and_healt

h.html. [Accessed 30 March 2018].

 References

108

[88] PC Mag, “Definition of: utility program,” [Online]. Available:

https://www.pcmag.com/encyclopedia/term/53588/utility-program. [Accessed 28 March

2018].

[89] Android Developers, “android.util,” Google, [Online]. Available:

https://developer.android.com/reference/android/util/package-summary.html. [Accessed

28 March 2018].

[90] CodePath, “Organizing your Source Files,” [Online]. Available:

https://guides.codepath.com/android/Organizing-your-Source-Files. [Accessed 28

March 2018].

[91] Android Developers, “Uri.Builder,” Google, [Online]. Available:

https://developer.android.com/reference/android/net/Uri.Builder.html. [Accessed 31

MArch 2018].

[92] Oracle, “Class Scanner,” [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html. [Accessed 31 March

2018].

[93] pat-522181 (Oracle Developer Community Username), “Stupid Scanner tricks... Blog,”

23 October 2004. [Online]. Available:

https://community.oracle.com/blogs/pat/2004/10/23/stupid-scanner-tricks. [Accessed 31

March 2018].

[94] Android Developers, “Calendar,” Google, [Online]. Available:

https://developer.android.com/reference/java/util/Calendar.html. [Accessed 27 March

2018].

[95] Android Developers, “ListView,” Google, [Online]. Available:

https://developer.android.com/reference/android/widget/ListView.html. [Accessed 2018

March 27].

[96] Android Developers, “AdapterView,” Google, [Online]. Available:

https://developer.android.com/reference/android/widget/AdapterView.html. [Accessed

27 March 2018].

 References

109

[97] Android Developers, “DatePickerDialog.OnDateSetListener,” Google, [Online].

Available:

https://developer.android.com/reference/android/app/DatePickerDialog.OnDateSetListe

ner.html. [Accessed 31 MArch 2018].

[98] Android Developers, “BottomSheetDialogFragment,” Google, [Online]. Available:

https://developer.android.com/reference/android/support/design/widget/BottomSheetDi

alogFragment.html. [Accessed 27 March 2018].

[99] Skale 2, “The bluetooth electronic scale with an open source SDK,” [Online]. Available:

http://www.skale.cc/en/skale_open_sdk.html.

[10

0]

M. Deliso, “Keto: What to know about the trendy low-carb, high-fat diet,” AM New

York, 18 March 2018. [Online]. Available: https://www.amny.com/eat-and-drink/keto-

diet-recipes-1.17484228. [Accessed 6 April 2018].

[10

1]

I. Strychar, “Diet and weight loss,” Canadian Medical Association Journal, vol. 175, no.

11, p. 1407, 2006.

[10

2]

A. Halevy, L. Peleg-Weiss, R. Cohen and A. Shuper, “An Update on the Ketogenic Diet,”

Rambam Maimonides Medical Journal, vol. 3, no. 1, pp. 1-9, 2012.

[10

3]

O. Ryan, “Data Commissioner 'actively supervising Facebook’s progress in cleaning up

its act',” The Journal, 5 April 2018. [Online]. Available:

http://www.thejournal.ie/zuckerberg-facebook-3940999-Apr2018/. [Accessed 6 April

2018].

[10

4]

M. Rosenberg, N. Confessore and C. Cadwallad, “How Trump Consultants Exploited the

Facebook Data of Millions,” The New York Times, 17 March 2018. [Online]. Available:

https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-

campaign.html. [Accessed 2018 April 6].

[10

5]

C. Cadwalla, “Facebook suspends data firm hired by Vote Leave over alleged Cambridge

Analytica ties,” The Guardian UK, 7 April 2018. [Online]. Available:

https://www.theguardian.com/us-news/2018/apr/06/facebook-suspends-aggregate-iq-

cambridge-analytica-vote-leave-brexit. [Accessed 7 April 2018].

 References

110

[10

6]

H. Kozlowska, “The Cambridge Analytica scandal affected nearly 40 million more

people than we thought,” Quartz, 4 April 2018. [Online]. Available:

https://qz.com/1245049/the-cambridge-analytica-scandal-affected-87-million-people-

facebook-says/. [Accessed 7 April 2018].

[10

7]

I. S. Punit, “335 Indians installed a Cambridge Analytica app, exposing the Facebook

data of 560,000,” Quartz India, 5 April 2018. [Online]. Available:

https://qz.com/1245515/facebook-admits-cambridge-analytica-may-have-accessed-the-

data-of-over-560000-users-in-india/. [Accessed 5 April 2018].

[10

8]

Engineers Ireland, Code of Ethics, Dublin, 2018.

[10

9]

R. Goldsborough, “Understanding the Common Battery,” Teacher Librarian; Bowie,

vol. 42, no. 3, pp. 69-71, 2015.

[11

0]

Health Service Executive (HSE), “NIMIS ‘<’ SYMBOL INCIDENT,” HSE, Dublin,

2018.

[11

1]

N. G. Leveson, “The Therac-25: 30 Years Later,” Computer, vol. 50, no. 11, pp. 8-11,

2017.

[11

2]

The World Medical Association, Inc., “WMA DECLARATION OF HELSINKI –

ETHICAL PRINCIPLES FOR MEDICAL RESEARCH INVOLVING HUMAN

SUBJECTS,” World Medical Association (WMA), October 2008. [Online]. Available:

https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-

medical-research-involving-human-subjects/. [Accessed 6 April 2018].

[11

3]

L. Alexander and A. Ivy, “THE NUREMBERG CODE,” [Online]. Available:

https://history.nih.gov/research/downloads/nuremberg.pdf.

[11

4]

G. J. Annas and M. A. Grodin, The Nazi Doctors and the Nuremburg Code, Oxford:

Oxford University Press, 1992.

[11

5]

American Health Information Management Association (AHIMA), “Information

Governance - Principles for Healthcare (IGPHC),” AHIMA, Chicago, 2014.

 References

111

[11

6]

P. Taylor, “Whose Property?,” London Review of Books, vol. 30, no. 3, pp. 25-26, 2018.

[11

7]

The Irish Data Protection Commissioner, “DATA PROTECTION ACT,” Dublin, 1988.

[11

8]

The Irish Data Protection Commissioner, “DATA PROTECTION (AMENDMENT)

ACT,” Dublin, 2003.

[11

9]

Irish Data Protection Commissioner, “EUROPEAN COMMUNITIES (ELECTRONIC

COMMUNICATIONS NETWORKS AND SERVICES) (PRIVACY AND

ELECTRONIC COMMUNICATIONS) REGULATIONS,” Dublin, 2011.

[12

0]

The Irish Data Protection Commissioner, “General Data Protection Regulation (GDPR),”

Dublin, 2018.

[12

1]

Android Developers, “Accessing data using Room DAOs,” Google, [Online]. Available:

https://developer.android.com/training/data-storage/room/accessing-data.html.

[Accessed 7 April 2018].

[12

2]

J. Corleone, “Meal Plans for 6 Meals a Day,” Livestrong, 3 October 2017. [Online].

Available: https://www.livestrong.com/article/206656-meal-plans-for-6-meals-a-day/.

[Accessed 7 April 2018].

[12

3]

A. Paturel, “6 Meals a Day for Weight Loss,” WebMD, 28 June 2014. [Online].

Available: https://www.webmd.com/diet/obesity/features/6_meals_a_day. [Accessed 7

April 2018].

[12

4]

H. S. Dashti and K. M. Mogensen, “Recommending Small, Frequent Meals in the

Clinical Care of Adults: A Review of the Evidence and Important Considerations,”

Nutrition in Clinical Practice, vol. 32, no. 3, 2016.

