
Predicting Short-term Media Memorability from Captions
An approach for maximising caption-based short-term memorability

 Luke Scales
 School of Computing
 Dublin City University

 Dublin, Ireland
 luke.scales2@mail.dcu.ie

ABSTRACT
The leading edge of entries to the MediaEval Predicting
Media Memorability Task of 2019 utilised models with
embedded captions to succeed [1][2]. Captions alone have
been proven to be useful in achieving high scores,
particularly in the short-term memorability category. The
ensembled approach of the winning entry in the 2019 task
relied upon captions embedded using the GloVe
embeddings model, however many other embeddings
models are readily available [1]. This paper presents a
competitive model for predicting short-term memorability
from captions which was developed via text preprocessing,
model design, and analysing a variety of text embeddings
methods.

1​ Introduction and Related Work
A plethora of word embedding models and Natural
Language Processing (NLP) techniques are currently
available for use in text-based machine learning (ML) tasks
[3]. The results of the 2019 MediaEval Media Memorability
task competitors, such as those of DCU Insight and
MeMAD, have shown that captions alone can provide
promising results in the short-term memory category. When
word embeddings are employed these results can be
improved significantly [1].

This work was heavily influenced by the MediaEval 2019
entry of DCU. DCU achieved the best-in-class results in the
2019 competition through ensembling results from various
models. These models were trained on embedded captions,
the output of a pre-trained ResNet152 model, as well as
models trained on the DCU team’s own pre-computed
emotions and aesthetics features [4].

While the GloVe embeddings used by the DCU team
have been very successfully applied here and in other
tasks, there are many competitive embedding models
available [3]. The DCU team also achieved remarkable
results without preprocessing or cleaning the captions. This
paper aims to compare some other embedding methods to
find a potential alternative to the GloVe embeddings, while

exploring text pre-processing techniques, in an attempt to
maximise the accuracy of the model being used.

2​ Approach
The captions were first preprocessed to correct any spelling
mistakes (e.g. when checking the least common words of
the raw captions, there were erroneous entries such as
“​longof​“, “​windowsk​“ etc.). While some tokenizers and
word embeddings will account for these mistakes by
assigning appropriately insignificant indexes or by assigning
them to out of vocabulary (OOV) buckets, they still affect
the model. Potentially significant words that are misspelled,
such as “windows” in the example errors shown, will not be
correctly accounted for by the model.

To correct the spelling mistakes the python autocorrect
library was used as a spell checker [5]. From analysing
entries corrected by the spell checker many more errors in
the captions were noticed which required manual correction.
A list of words to be ignored by the spell checker were
added, as it tried to unnecessarily correct some nouns to
the closest common word (e.g. it replaced “ipad” with “pad”
and corrected the names of some places), as well as a
series of manual spelling corrections.

A variety of embeddings with OOV buckets were tested
from TensorFlow Hub. The first embeddings tested were
two variations of Google’s GNews “Swivel” embeddings
[6][7], an embeddings model trained on the Google News
130GB corpus using Google’s Submatrix-wise Vector
Embedding Learner (Swivel) method [8]. Both of these
embeddings map text to 20-dimensions: the first uses 1
OOV bucket for unknown tokens while the second
(annotated as “with-OOV”) sends around 2.5% of the least
frequent tokens and embeddings to hash buckets.

The other two models tested also send a small
percentage of the least frequent tokens and embeddings to
hash buckets but are based on a different word embeddings
model [9][10]. The models (named “nnlm-en-dim50” and
“nnlm-en-dim128”) are based on a feed-forward Neural-Net
Language Model [11] with pre-built OOV. The first is trained
on the English Google News 7B corpus (with 7 Billion

CA684 Machine Learning, MCM1, DCU, 2020 L. Scales

words) and maps inputted text to 50 dimensions. The
second is trained on the equivalent 200B corpus and maps
text to 128 dimensions

An initial model was used to experiment with
train/validation splits and trainable/non-trainable embedding
layers. The model used was taken from the core of the
model used in the DCU entry (without the Recurrent Unit). It
was developed as a Keras Sequential model with 8 layers
(an input embedding layer, 1024, 512, and 256 relu
activated Dense nodes separated by 0.25 Dropout layers,
followed by a single Dense node with a sigmoid activation
function). With results from the preprocessing and
embeddings experiments the final model parameters were
found through hyperparameter tuning.

Google Colab was used to train these models online and
explore the dataset however the limitations of using this
platform with a (free) hosted environment impeded training
and analysis. The use of GPUs and TPUs is limited when
running in Google’s free hosted environments. To
circumvent this a virtual machine (VM) was created on
Google Cloud Platform (GCP) to train and run the
experiment scripts. Port forwarding was used to connect
colab to a local environment which utilised the processing
power of the VM instance created.

3​ Results and Analysis
By analysing the corrections made by the spell checker
three main issues were noticed. The first is that many errors
were present in the data that could not be corrected by the
spell checker (and were not corrected manually), such as
two words being concatenated into one in the captions (a
common example is “​steadicamof​”). For these issues
the spell checker would assume it to be one word and this
would result in lost data.

The second issue noticed is that the spell checker made
corrections on words that did not need to be corrected,
which, as mentioned in the “Approach” section, were mostly
attempts to replace nouns that were unrecognised by the
spell checker. It is likely that a number of corrections are not
accounted for in the test set.

The third (potential) issue that became evident was that
some captions repeated in the provided devset. From
checking the captions dataframe using the pandas
nunique() function it showed that only 5199 out of 6000
captions were unique. This could potentially be from videos
being flipped or rotated to create new data points, with the
assumption that a video’s memorability is unaffected by
direction of the video, however there is no mention of this
on the task website.

3.1​ Preprocessing Methods Comparison
Experiments on the preprocessing techniques showed that
accuracy increased for most models on a short 20 epoch
training cycle when spelling errors were corrected. The
results of this comparison (Table 1) indicated that training
the 128 dimension model using spell checked captions
could provide the most accurate results. The NLP
techniques did not yield consistent improvements across all
models however.

Table 1

 Spearman correlation coefficient

NLP
Methods

Swivel
20dim

Swivel
20dim
OOV

NNLM
50dim

NNLM
128dim

Raw
captions

0.328, 0.312 0.346 0.392

Spell
checker

0.344 0.290 0.361 0.422

Stopwords 0.339 0.314 0.382 0.379

Lemmatized 0.327 0.321 0.357 0.392

A second round of testing was performed when the VM was
deployed (Table 2), with the 1st run at 20 epochs and the
2nd at 50 epochs. This emphasised that the 128 dimension
NNLM embeddings model was the most promising of the
cohort.

Table 2

 Spearman correlation coefficient

NLP
Methods

Swivel
20dim

Swivel
20dim
OOV

NNLM
50dim

NNLM
128dim

Raw
captions

1: 0.319
2: 0.301

1: 0.317
2: 0.342

1: 0.372
2: 0.393

1: 0.411
2: 0.420

Spell
checker

1: 0.323
2: 0.328

1: 0.302
2: 0.328

1: 0.365
2: 0.398

1: 0.414
2: 0.408

Stopwords 1: 0.359
2: 0.351

1: 0.325
2: 0.305

1: 0.397
2: 0.419

1: 0.379
2: 0.418

Lemmatized 1: 0.332
2: 0.329

1: 0.321
2: 0.332

1: 0.383
2: 0.389

1: 0.377
2: 0.384

MediaEval Predicting Media Memorability
 CA684 Machine Learning, DCU, 2020

3.2​ Embeddings Comparison

The various embedding methods were compared using the
initial model to isolate the most promising method. The
model was trained using one-hot encoding as a control for
the experiment while each of the embeddings methods
were trained with both a trainable and non-trainable
embedding layer. As per Table 3 it was found that the
NNLM 128 dimension model using a non-trainable
embedding layer resulted in the best performance for the
initial 20 epoch experiment.

Table 3

 Spearman correlation coefficient

Embedding
Method

Trainable
Embeddings

Non-Trainable
Embeddings

one-hot encoding N/A 0.377

GNews Swivel
20D

0.316 0.333

GNews Swivel
20D OOV

0.334 0.318

NNLM 50D OOV 0.359 0.383

NNLM 128D
OOV

0.383 0.389

3.3​ Final Model and Hyperparameter Tuning
While some initial work was done in a hosted environment,
the final model was entirely trained in GCP. The initial
results showed the 128 dimension NNLM model to be the
most promising so this was used in the embedding layer. L2
kernel regularizers were applied to the 1024 node and 512
node Dense layers of the network to prevent overfitting of
the model. With captions alone the results suggest a
competitively accurate model with over 0.45 Spearman
correlation coefficient in the short-term category when
evaluating the model against the validation set. This score
was achieved with a Dropout of 0.25 initially, before
hyperparameter tuning.

Hyperparameter tuning was performed on GCP to test a
range of Dropout values. Some issues and time constraints
prevented the tuning of more parameters. From the results
(which can be viewed using the notebook tensorboard
extension) it was found that a Dropout of 0.2 produced the
best results of the tested values. With hyperparameter
tuning performed at 500 epochs, final models were trained

taking the best Mean Squared Error of each run of 1000
epochs using Keras ModelCheckpoint.

This work focused on short-term memorability but the
model was applied to the long-term data also for
completeness. The model was applied as-is following tuning
for the short-term category, producing reasonable long-term
scores (Table 4). All models were trained with a 90/10 split
of 5400 training to 600 validation points. As can be seen in
the results this produced effective short-term memorability
models, particularly in the case where the spell-checker and
stopword removal was combined.

Table 4

 NNLM 128dim - Spearman Coefficient

NLP
Methods

Short-term Long-term

Raw
captions

0.475 0.176

Spell
checker

0.466 0.196

Stopwords 0.481 0.203

Lemmatized 0.474 0.233

4​ Discussion and Outlook

This work highlights the erroneous nature of the captions in
the dataset, yet provides evidence that this does not
adversely affect the predictability of the video memorability.
The assumption held by the writer at the beginning of the
experiments was that model accuracy would increase from
correcting spelling mistakes and reducing the data to the
most pertinent points (by removing stopwords and through
lemmatization). While this work proves that reducing the
data using these NLP techniques did produce more
accurate results, it did so on top of captions with corrected
spellings. Making spelling corrections alone did not reliably
increase the accuracy of ​this model, however it could be
beneficial with other embeddings such as GloVe.

It is plausible that the incorrect spellings in the raw
captions are of benefit to this model: due to OOV buckets,
the repeatedly misspelled words such as
“​steadicamof​”, may direct the development of weights
within the model in a beneficial manner as they are
assigned unique embedding value. It raises the possibility
for improvement if an NNLM model is trained on the dataset
directly to develop a set of embeddings specific to this task.
It is also plausible that further corrections to the captions

CA684 Machine Learning, MCM1, DCU, 2020 L. Scales

could possibly result in further improvements to the
accuracy of the model in unison with the other NLP
techniques.

Such improvements in the captions could be achieved
through the use of enhanced spell checking, such as from
the use of different spell checkers or from cross-referencing
multiple spell checkers. An ML solution could be applied as
a spell checking model also, even simply to detect bigrams
being misrecorded as one word (like the examples
“​longof​” and “​steadicamof​” mentioned above). More
manual intervention in the spell checking process (similar to
that used in this project) may produce more accurate results
also.

While the work was successful in developing a
competitive caption-based model through NLP techniques,
these were stacked on top of the effects of the spell
checking. This approach could yield positive results through
applying the NLP techniques directly to the raw captions
rather than with the use of a spell checker as shown here.
By removing the stopwords from the spell-checked captions
the evaluation on the validation set saw a noticeable
improvement over raw captions and spell-checked captions
in the short-term category. It would be insightful to show the
accuracy of a model trained on raw captions without
stopwords. The results suggest that this has the potential to
be an effective tactic but further processing and analyses
will be needed to confirm this.

Further work should aim to increase the accuracy of this
model with the ultimate goal of ensembling it with other
models. The use of Recurrent Neural Network units in this
model would be an easily applied addition that could greatly
increase the accuracy of the model. For example, the DCU
entry utilised a Gated Recurrent Unit (GRU) [12] alongside
their embeddings layer to great effect. The use of a GRU or
a Bidirectional Long Short-Term Memory (LSTM) cell with
this model could be explored in further work. Bi-directional
LSTMs have been used successfully in models trained on
sentences for various tasks. Similarly other embeddings
models that are trained on sentences, such as ELMo or
InferSent, could be tested here, as well as the use of a
scheduled decaying learning rate.

Some ML models are available which produce captions
for videos and images, such as those used in the Microsoft
Common Objects in Context (MS COCO) Challenges [13].
Whether these models would be effective with this task or
not is unknown, but the caption outputs of these models
could be inputted to the model used here. Lastly, with more
time and/or computing resources, more detailed
hyperparameter tuning could be performed to maximise the
accuracy of this model. In particular, further work could be
performed to improve the accuracy in the long-term

category. The captions with spell checking, stopword
removal, and lemmatization produced optimistic results
without being optimised for this category. One can
reasonably assume that these results will be further
enhanced with hyperparameter tuning specific to this
category.

ACKNOWLEDGMENTS
The writer thanks ICT Skillnet for part-funding the degree
that this work was performed for, as well as Tomas Ward
and Eoin Brophy for their teachings and guidance
throughout this project. Acknowledgements are also due to
the Google Cloud Platform Support Team and Leonard from
the Google Compute Team for expediting the GPU quota
increase request.

REFERENCES
[1] Azcona, D., Moreu, E., Hu, F., Ward, T. E., and Smeaton, A. F. 2019.

Predicting Media Memorability Using Ensemble Models​. The Predicting
Media Memorability Task at Mediaeval 2019. (2019).

[2] Laaksonen, J., Troncy, R., and Reboud, A. ​MeMAD Project, Media
Memorability. 2019. The Predicting Media Memorability Task at
Mediaeval 2019.(2019). ​https://github.com/MeMAD-project

[3] Perone, C. S., R. Silveira, and T. S. Paula. Evaluation of Sentence
Embeddings in Downstream and Linguistic Probing Tasks. arXiv preprint
arXiv:1806.06259, 2018.

[4] Azcona, D. 2019. ​Insight@DCU in the Memorability Challenge at
MediaEval2019 ​https://github.com/dazcona/memorability​.

[5] Sondej, F., 2019. ​Autocorrect: Spelling corrector in python
https://github.com/fsondej/autocorrect​.

[6] Google. tf2-preview/gnews-swivel-20dim. ​Token based text embedding
trained on English Google News 130GB corpus​. TFHub.
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1​ .

[7] Google. tf2-preview/gnews-swivel-20dim-with-oov. ​Token based text
embedding trained on English Google News 130GB corpus​. TFHub.
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim-with-oov/1​.

[8] Shazeer, N., R. Doherty, C. Evans, and C. Waterson. ​Swivel: Improving
Embeddings by Noticing What’s Missing​. arXiv preprint
arXiv:1602.02215, 2016

[9] Google. tf2-Preview/nnlm-En-dim50. ​Token based text embedding
trained on English Google News 7B corpus. ​TFHub.
https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1​.

[10] Google. tf2-Preview/nnlm-En-dim128. ​Token based text embedding
trained on English Google News 200B corpus. ​TFHub.
https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1​.

[11] Bengio, Y., R. Ducharme, P. Vincent, and C. Jauvin. ​A Neural
Probabilistic Language Model​. Journal of machine learning research,
Vol. 3, No. Feb, 2003, pp. 1137–1155.

[12] Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.;
Schwenk, H.; Bengio, Y. (2014). "​Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation"​.
arXiv:1406.1078

[13] Laina, I., C. Rupprecht, and N. Navab. Towards Unsupervised Image
Captioning with Shared Multimodal Embeddings. 2019.

https://github.com/MeMAD-project
https://github.com/dazcona/memorability
https://github.com/fsondej/autocorrect
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim-with-oov/1
https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1
https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1

