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ABSTRACT 
The leading edge of entries to the MediaEval Predicting         
Media Memorability Task of 2019 utilised models with        
embedded captions to succeed [1][2]. Captions alone have        
been proven to be useful in achieving high scores,         
particularly in the short-term memorability category. The       
ensembled approach of the winning entry in the 2019 task          
relied upon captions embedded using the GloVe       
embeddings model, however many other embeddings      
models are readily available [1]. This paper presents a         
competitive model for predicting short-term memorability      
from captions which was developed via text preprocessing,        
model design, and analysing a variety of text embeddings         
methods. 

1​ Introduction and Related Work 
A plethora of word embedding models and Natural        
Language Processing (NLP) techniques are currently      
available for use in text-based machine learning (ML) tasks         
[3]. The results of the 2019 MediaEval Media Memorability         
task competitors, such as those of DCU Insight and         
MeMAD, have shown that captions alone can provide        
promising results in the short-term memory category. When        
word embeddings are employed these results can be        
improved significantly [1]. 

This work was heavily influenced by the MediaEval 2019          
entry of DCU. DCU achieved the best-in-class results in the          
2019 competition through ensembling results from various       
models. These models were trained on embedded captions,        
the output of a pre-trained ResNet152 model, as well as          
models trained on the DCU team’s own pre-computed        
emotions and aesthetics features [4].  

While the GloVe embeddings used by the DCU team          
have been very successfully applied here and in other         
tasks, there are many competitive embedding models       
available [3]. The DCU team also achieved remarkable        
results without preprocessing or cleaning the captions. This        
paper aims to compare some other embedding methods to         
find a potential alternative to the GloVe embeddings, while         

exploring text pre-processing techniques, in an attempt to        
maximise the accuracy of the model being used.  

2​ Approach 
The captions were first preprocessed to correct any spelling         
mistakes (e.g. when checking the least common words of         
the raw captions, there were erroneous entries such as         
“​longof​“, “​windowsk​“ etc.). While some tokenizers and       
word embeddings will account for these mistakes by        
assigning appropriately insignificant indexes or by assigning       
them to out of vocabulary (OOV) buckets, they still affect          
the model. Potentially significant words that are misspelled,        
such as “windows” in the example errors shown, will not be           
correctly accounted for by the model. 

To correct the spelling mistakes the python autocorrect         
library was used as a spell checker [5]. From analysing          
entries corrected by the spell checker many more errors in          
the captions were noticed which required manual correction.        
A list of words to be ignored by the spell checker were            
added, as it tried to unnecessarily correct some nouns to          
the closest common word (e.g. it replaced “ipad” with “pad”          
and corrected the names of some places), as well as a           
series of manual spelling corrections. 

A variety of embeddings with OOV buckets were tested          
from TensorFlow Hub. The first embeddings tested were        
two variations of Google’s GNews “Swivel” embeddings       
[6][7], an embeddings model trained on the Google News         
130GB corpus using Google’s Submatrix-wise Vector      
Embedding Learner (Swivel) method [8]. Both of these        
embeddings map text to 20-dimensions: the first uses 1         
OOV bucket for unknown tokens while the second        
(annotated as “with-OOV”) sends around 2.5% of the least         
frequent tokens and embeddings to hash buckets.  

The other two models tested also send a small          
percentage of the least frequent tokens and embeddings to         
hash buckets but are based on a different word embeddings          
model [9][10]. The models (named “nnlm-en-dim50” and       
“nnlm-en-dim128”) are based on a feed-forward Neural-Net       
Language Model [11] with pre-built OOV. The first is trained          
on the English Google News 7B corpus (with 7 Billion          



 
CA684 Machine Learning, MCM1, DCU, 2020 L. Scales 
 
words) and maps inputted text to 50 dimensions. The         
second is trained on the equivalent 200B corpus and maps          
text to 128 dimensions 

An initial model was used to experiment with         
train/validation splits and trainable/non-trainable embedding     
layers. The model used was taken from the core of the           
model used in the DCU entry (without the Recurrent Unit). It           
was developed as a Keras Sequential model with 8 layers          
(an input embedding layer, 1024, 512, and 256 relu         
activated Dense nodes separated by 0.25 Dropout layers,        
followed by a single Dense node with a sigmoid activation          
function). With results from the preprocessing and       
embeddings experiments the final model parameters were       
found through hyperparameter tuning. 

Google Colab was used to train these models online and           
explore the dataset however the limitations of using this         
platform with a (free) hosted environment impeded training        
and analysis. The use of GPUs and TPUs is limited when           
running in Google’s free hosted environments. To       
circumvent this a virtual machine (VM) was created on         
Google Cloud Platform (GCP) to train and run the         
experiment scripts. Port forwarding was used to connect        
colab to a local environment which utilised the processing         
power of the VM instance created. 

3​ Results and Analysis 
By analysing the corrections made by the spell checker         
three main issues were noticed. The first is that many errors           
were present in the data that could not be corrected by the            
spell checker (and were not corrected manually), such as         
two words being concatenated into one in the captions (a          
common example is “​steadicamof​”). For these issues       
the spell checker would assume it to be one word and this            
would result in lost data.  

The second issue noticed is that the spell checker made           
corrections on words that did not need to be corrected,          
which, as mentioned in the “Approach” section, were mostly         
attempts to replace nouns that were unrecognised by the         
spell checker. It is likely that a number of corrections are not            
accounted for in the test set.  

The third (potential) issue that became evident was that          
some captions repeated in the provided devset. From        
checking the captions dataframe using the pandas       
nunique() function it showed that only 5199 out of 6000          
captions were unique. This could potentially be from videos         
being flipped or rotated to create new data points, with the           
assumption that a video’s memorability is unaffected by        
direction of the video, however there is no mention of this           
on the task website. 

3.1​ Preprocessing Methods Comparison 
Experiments on the preprocessing techniques showed that       
accuracy increased for most models on a short 20 epoch          
training cycle when spelling errors were corrected. The        
results of this comparison (Table 1) indicated that training         
the 128 dimension model using spell checked captions        
could provide the most accurate results. The NLP        
techniques did not yield consistent improvements across all        
models however. 

Table 1 

 Spearman correlation coefficient 

NLP 
Methods 
 

Swivel 
20dim 

Swivel 
20dim 
OOV 

NNLM 
50dim 

NNLM 
128dim 

Raw 
captions 

0.328, 0.312 0.346 0.392 

Spell 
checker 

0.344 0.290 0.361 0.422 

Stopwords 0.339 0.314 0.382 0.379 

Lemmatized 0.327 0.321 0.357 0.392 

 
A second round of testing was performed when the VM was           
deployed (Table 2), with the 1st run at 20 epochs and the            
2nd at 50 epochs. This emphasised that the 128 dimension          
NNLM embeddings model was the most promising of the         
cohort. 

Table 2 

 Spearman correlation coefficient 

NLP 
Methods 
 

Swivel 
20dim 

Swivel 
20dim 
OOV 

NNLM 
50dim 

NNLM 
128dim 

Raw 
captions 

1: 0.319 
2: 0.301 

1: 0.317 
2: 0.342 

1: 0.372 
2: 0.393 

1: 0.411 
2: 0.420 

Spell 
checker 

1: 0.323 
2: 0.328 

1: 0.302 
2: 0.328 

1: 0.365 
2: 0.398 

1: 0.414 
2: 0.408 

Stopwords 1: 0.359 
2: 0.351 

1: 0.325 
2: 0.305 

1: 0.397 
2: 0.419 

1: 0.379 
2: 0.418 

Lemmatized 1: 0.332 
2: 0.329 

1: 0.321 
2: 0.332 

1: 0.383 
2: 0.389 

1: 0.377 
2: 0.384 
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3.2​ Embeddings Comparison 

The various embedding methods were compared using the        
initial model to isolate the most promising method. The         
model was trained using one-hot encoding as a control for          
the experiment while each of the embeddings methods        
were trained with both a trainable and non-trainable        
embedding layer. As per Table 3 it was found that the           
NNLM 128 dimension model using a non-trainable       
embedding layer resulted in the best performance for the         
initial 20 epoch experiment. 

Table 3 

 Spearman correlation coefficient 

Embedding 
Method 

Trainable 
Embeddings 

Non-Trainable 
Embeddings 

one-hot encoding N/A 0.377 

GNews Swivel 
20D 

0.316 0.333 

GNews Swivel 
20D OOV 

0.334 0.318 

NNLM 50D OOV 0.359 0.383 

NNLM 128D 
OOV 

0.383 0.389 

 

3.3​ Final Model and Hyperparameter Tuning 
While some initial work was done in a hosted environment,          
the final model was entirely trained in GCP. The initial          
results showed the 128 dimension NNLM model to be the          
most promising so this was used in the embedding layer. L2           
kernel regularizers were applied to the 1024 node and 512          
node Dense layers of the network to prevent overfitting of          
the model. With captions alone the results suggest a         
competitively accurate model with over 0.45 Spearman       
correlation coefficient in the short-term category when       
evaluating the model against the validation set. This score         
was achieved with a Dropout of 0.25 initially, before         
hyperparameter tuning. 

Hyperparameter tuning was performed on GCP to test a          
range of Dropout values. Some issues and time constraints         
prevented the tuning of more parameters. From the results         
(which can be viewed using the notebook tensorboard        
extension) it was found that a Dropout of 0.2 produced the           
best results of the tested values. With hyperparameter        
tuning performed at 500 epochs, final models were trained         

taking the best Mean Squared Error of each run of 1000           
epochs using Keras ModelCheckpoint.  

This work focused on short-term memorability but the         
model was applied to the long-term data also for         
completeness. The model was applied as-is following tuning        
for the short-term category, producing reasonable long-term       
scores (Table 4). All models were trained with a 90/10 split           
of 5400 training to 600 validation points. As can be seen in            
the results this produced effective short-term memorability       
models, particularly in the case where the spell-checker and         
stopword removal was combined. 

Table 4 

 NNLM 128dim - Spearman Coefficient  

NLP 
Methods 

Short-term Long-term 

Raw 
captions 

0.475 0.176 

Spell 
checker 

0.466 0.196 

Stopwords 0.481 0.203 

Lemmatized 0.474 0.233 

4​ Discussion and Outlook 

This work highlights the erroneous nature of the captions in          
the dataset, yet provides evidence that this does not         
adversely affect the predictability of the video memorability.        
The assumption held by the writer at the beginning of the           
experiments was that model accuracy would increase from        
correcting spelling mistakes and reducing the data to the         
most pertinent points (by removing stopwords and through        
lemmatization). While this work proves that reducing the        
data using these NLP techniques did produce more        
accurate results, it did so on top of captions with corrected           
spellings. Making spelling corrections alone did not reliably        
increase the accuracy of ​this model, however it could be          
beneficial with other embeddings such as GloVe. 

It is plausible that the incorrect spellings in the raw           
captions are of benefit to this model: due to OOV buckets,           
the repeatedly misspelled words such as      
“​steadicamof​”, may direct the development of weights       
within the model in a beneficial manner as they are          
assigned unique embedding value. It raises the possibility        
for improvement if an NNLM model is trained on the dataset           
directly to develop a set of embeddings specific to this task.           
It is also plausible that further corrections to the captions          
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could possibly result in further improvements to the        
accuracy of the model in unison with the other NLP          
techniques.  

Such improvements in the captions could be achieved         
through the use of enhanced spell checking, such as from          
the use of different spell checkers or from cross-referencing         
multiple spell checkers. An ML solution could be applied as          
a spell checking model also, even simply to detect bigrams          
being misrecorded as one word (like the examples        
“​longof​” and “​steadicamof​” mentioned above). More      
manual intervention in the spell checking process (similar to         
that used in this project) may produce more accurate results          
also. 

While the work was successful in developing a         
competitive caption-based model through NLP techniques,      
these were stacked on top of the effects of the spell           
checking. This approach could yield positive results through        
applying the NLP techniques directly to the raw captions         
rather than with the use of a spell checker as shown here.            
By removing the stopwords from the spell-checked captions        
the evaluation on the validation set saw a noticeable         
improvement over raw captions and spell-checked captions       
in the short-term category. It would be insightful to show the           
accuracy of a model trained on raw captions without         
stopwords. The results suggest that this has the potential to          
be an effective tactic but further processing and analyses         
will be needed to confirm this. 

Further work should aim to increase the accuracy of this           
model with the ultimate goal of ensembling it with other          
models. The use of Recurrent Neural Network units in this          
model would be an easily applied addition that could greatly          
increase the accuracy of the model. For example, the DCU          
entry utilised a Gated Recurrent Unit (GRU) [12] alongside         
their embeddings layer to great effect. The use of a GRU or            
a Bidirectional Long Short-Term Memory (LSTM) cell with        
this model could be explored in further work. Bi-directional         
LSTMs have been used successfully in models trained on         
sentences for various tasks. Similarly other embeddings       
models that are trained on sentences, such as ELMo or          
InferSent, could be tested here, as well as the use of a            
scheduled decaying learning rate.  

Some ML models are available which produce captions         
for videos and images, such as those used in the Microsoft           
Common Objects in Context (MS COCO) Challenges [13].  
Whether these models would be effective with this task or          
not is unknown, but the caption outputs of these models          
could be inputted to the model used here. Lastly, with more           
time and/or computing resources, more detailed      
hyperparameter tuning could be performed to maximise the        
accuracy of this model. In particular, further work could be          
performed to improve the accuracy in the long-term        

category. The captions with spell checking, stopword       
removal, and lemmatization produced optimistic results      
without being optimised for this category. One can        
reasonably assume that these results will be further        
enhanced with hyperparameter tuning specific to this       
category. 
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